Tensile Testing of Steel...

Tensile Testing of Steel Sample of steel is subjected to a wide variety of mechanical tests to measure their strength, elastic constants, and other material properties as well as their performance under a variety of actual use conditions and environments. Tensile test is one of them. Other tests are hardness test, impact test, fatigue test, and fracture test. These mechanical tests are used to measure how a sample of steel withstands an applied mechanical force. The results of such tests are used for two primary purposes namely (i) engineering design (e.g. failure theories based on strength, or deflections based on elastic constants and component geometry), and (ii) quality control either by the producer of steel to verify the process or by the end user to confirm the material specifications. Uniaxial tensile test is known as a basic and universal engineering test to achieve material parameters such as ultimate tensile strength (UTS), yield strength (YS), % elongation, % area of reduction and young’s modulus. Tensile testing is done for many reasons. The results of tensile tests are used in selecting materials for engineering applications. Tensile properties are often included in material specifications to ensure quality. Tensile properties are also normally measured during development of new materials and processes, so that different materials and processes can be compared. Also, tensile properties are generally used to predict the behaviour of a material under forms of loading other than uniaxial tension. Safely withstanding the expected maximum load without permanent deformation (or to stay within the specified deflection) is a basic requirement for a steel product. The ‘resistance’ against the load is a function of the cross-section and the mechanical properties (or in other words the ‘strength’) of the steel material. Tensile testing is done to determine the mechanical...

Behaviour of Iron and Steel Materials during Tensile Testing Aug28

Behaviour of Iron and Steel Materials during Tensile Testing...

Behaviour of Iron and Steel Materials during Tensile Testing The mechanical properties of iron and steels are often assessed through tensile testing. The testing technique is well standardized and can be conducted economically with a minimum of equipment. Since iron and steel materials are being utilized in structural applications, they are to have tensile properties which meet the requirements of the relevant codes and standards. These requirements in the code and standards are the minimum strength and ductility levels. Due to this, information available from tensile testing is often underutilized. However, direct examination of many of the metallurgical interactions which influence the results of tensile testing can considerably improve the usefulness of the testing data. Examination of these interactions, and correlation with metallurgical / material /application variables such as heat treatment, surface finish, test environment, stress state, and anticipated thermo-mechanical exposures, can lead to significant improvements in both the efficiency and the quality of utilization of iron and steel materials in the engineering applications. Tensile testing of iron and steel materials is done for many reasons. Tensile properties are normally included in material specification to ensure quality and are often used to predict the behaviour of these materials during different forms of loading other than uniaxial tension. The result of tensile testing is normally used in the selection of these materials for engineering uses. It provides a relatively easy and cheap technique for developing mechanical property data for the selection, qualification, and utilization of these materials in engineering applications. This data is generally used to establish the suitability of these materials for a particular application, and/or to provide a basis for comparison with other substitute materials. The elastic moduli of iron and steel materials are dependent on the rate at which the test sample...