Induction Furnace and Important Operational Aspects Feb14

Induction Furnace and Important Operational Aspects...

Induction Furnace and Important Operational Aspects   The development of the induction furnace for steel making has been a boon to the small steel producers. These furnaces are easy to install, operate and maintain. These furnaces are smaller in heat size with a low cost investment and preferred by lower capacity steel plants. In these furnaces, steel is produced by melting the charge material using the heat produced by electromagnetic field. The induction furnace consists basically of a crucible, inductor coil, and shell, cooling system and tilting mechanism. The crucible is formed from refractory material, which the furnace coils is lined with. This crucible holds the charge material and subsequently the melt. The choice of refractory material depends on the type of the charge and basically consist of either acidic, basic or neutral refractories. The inductor coil is a tubular copper coil with specific number of turns. An alternating current (AC) passes through it and magnetic flux is generated within the conductor. The magnetic flux generated induces eddy currents that enable the heating and subsequently the melting process in the crucible. The shell is the outer part of the furnace. This houses the crucible and the inductor coils, and has higher thermal capacity. It is made of rectangular parallelepiped with low carbon steel plate and joined at the corners by edge carriers from angular pieces and strips of non-magnetic metal. The cooling system is normally a through one way flow system with the tubular copper coils connected to water source through flexible rubber hoses. The cooling process is important because the circuit of the furnace appears resistive, and the real power is not only consumed in the charged material but also in the resistance of the coil. This coil loss as well as the loss...