Romelt Process for Ironmaking Mar20

Romelt Process for Ironmaking...

Romelt Process for Ironmaking Romelt process for ironmaking is a smelting reduction process for the production of hot metal (liquid iron). The process has been developed by The National University of Science & Technology ‘MISiS’, Russia (formerly known as Moscow Institute of Steel and Alloys). The development work of the process started in 1978 when a group of ‘MISiS’ scientists led by Vladimir Roments began working on designing of this process. The first patent in Russia was obtained in 1979. A pilot production plant having a hearth area of 20 sq m and with a capacity 40,000 tons of hot metal per year was commissioned in 1985 at the Novolipetsk Iron and Steel Works (NLMK). The pilot plant was designed by Moscow Gipromez. The design of the reliable Vanyukov’s furnace was taken as the prototype for this new method of manufacturing hot metal. The process was tested and mastered at this pilot plant between 1985 and 1998. During this period forty-one campaigns were carried out, each of which included startup and slowdown, with full tapping of hot metal and slag from the furnace. More than 40,000 tons of hot metal was produced in the pilot plant during this period and used further in basic oxygen furnace (BOF) for steelmaking. The first industrial plant for hot metal production based on Romelt technology is being built at Myanmar. The plant has been designed by Leningrad Gipromez and being supplied by Tyazpromexport, a subsidiary of Rostec. This plant has a capacity of 200,000 tons per year and is based on the processing of iron ore without its beneficiation from Pang Pet ore deposit. Pang Pet ore deposits have Fe content of up to 29 %. The plant will use non-coking coal from Kye Thee coal fields. The...

Development of Smelting Reduction Processes for Ironmaking Mar08

Development of Smelting Reduction Processes for Ironmaking...

Development of Smelting Reduction Processes for Ironmaking Smelting reduction (SR) processes are the most recent development in the production technology of hot metal (liquid iron). These processes combine the gasification of non-coking coal with the melt reduction of iron ore. Energy intensity of SR processes is lower than that of blast furnace (BF), since the production of coke is not needed and the need for preparation of iron ore is also reduced. SR ironmaking process was conceived in the late 1930s. The history of the development of SR processes goes back to the 1950s. The laboratory scale fundamental studies on the SR of iron ore were started first by Dancy in 1951. However, serious efforts started from 1980 onwards. There have been two separate lines of development of primary ironmaking technology during the second half of twentieth century. The first line of development was centred on the BF which remained the principal process unit for the hot metal production. In general, this line of the development did not encompass any radical process changes in the furnace itself. It proceeded through a gradual evolution which involved (i) increase in the furnace size, (ii) improvement in the burden preparation, (iii) increase in the top pressure, (iv) increase of hot blast temperature, (v) bell-less charging and improvements in burden distribution, (vi) improvements in refractories and cooling systems, (vii) injection of auxiliary fuels (fuel gas, liquid fuel, or pulverized coal) and enrichment of hot air blast with oxygen (O2), and (viii) application of automation as well as improvements in instrumentation and control technology. The continued success of the ironmaking in BF reflects the very high levels of thermal and chemical efficiencies which can be achieved during the production of hot metal and the consequent cost advantages. In fact,...