Corrosion in Steels – Its Types and Testing...

Corrosion in Steels – Its Types and Testing Corrosion is a universal natural process. The effect of corrosion is seen in every-day life in the form of rusted steel parts. Corrosion has a huge economic impact. About a fifth of the global annual steel production goes towards simply replacing steel parts damaged by corrosion. Even though it involves higher up-front cost, correct and efficient corrosion protection at the source helps save money and resources in the long run. Failure due to corrosion can result into dramatic consequences. Corrosion is the gradual degradation of a metal by chemical, often electrochemical reaction with the surrounding environment. Corrosion results into loss of material properties such as mechanical strength, appearance, and impermeability to liquids and gases. Whether steel is corrosion resistant in a specific environment depends on the combination of the chemical composition of steel and the aggressiveness of the environment. As per ISO 8044:2010, corrosion is the physicochemical interaction between a metal and its environment, which results in changes in the metal’s properties and which may lead to significant functional impairment of the metal, the environment, or the technical system of which they form a part. Corrosion takes place when there is a change in the steel’s or system’s properties which may lead to an undesirable outcome. This can range simply from visual impairment to complete failure of technical systems which cause great economic damage and even present a hazard to the people. The typical corrosion process can be regarded as the thermodynamically favoured reverse reaction of the metal-winning (extraction) process (Fig 1). Like all chemical reactions, corrosion processes take place when conditions favour the related chemical reactions (thermodynamics). Then, potential other factors drive the speed of the reaction (kinetics). Fig 1  Chemical reactions of iron during...

Corrosion of Cast Steels...

Corrosion of Cast Steels Cast steels are generally classified into the categories of (i) carbon (C) steels, (ii) low alloy steels, (iii) corrosion resistant steels, and (iv) heat resistant steels, depending on the alloy content and the planned usage. Steel castings are categorized as corrosion resistant if they are capable of sustained operation when exposed to attack by corrosive agents at operating temperatures which are generally below 300 deg C. The high alloy iron base compositions are generally given the name ‘stainless steels’, though this name is not recognized universally. Actually, these steels are widely referred to as cast stainless steels. Some of the high alloy steels (e.g. 12 % chromium steel) show many of the familiar physical characteristics of C steels and low alloy steels, and some of their mechanical properties, such as hardness and tensile strength (TS), can be altered by suitable heat treatment. The alloy steels of higher chromium (Cr) content (20 % to 30 % Cr), Cr-Ni (nickel)  steels and Ni-Cr steels do not show the changes in phase observed in ordinary C steel when heated or cooled in the range from room temperature to the melting point. Consequently, these steels are non hardenable, and their mechanical properties depend on the composition instead of heat treatment. The high alloy steels (stainless steels) differ from C steels and low alloy steels in other respects, such as their production and properties. Special attention is required to be given to each grade with regard to casting design and casting practice in the foundry. For example, such elements as Cr, Ni, C, N2 (nitrogen), Si (silicon), Mo (molybdenum), and Nb (niobium) can exert a deep impact on the ultimate structure of these complex steels. Hence, balancing of the alloy compositions is normally required to...