Coal for Pulverized Coal Injection in Blast Furnace...

Coal for Pulverized Coal Injection in Blast Furnace Injection of pulverized coal in the blast furnace (BF) was initially driven by high oil prices but now the use of pulverized coal injection (PCI) hasĀ  become a standard practice in the operation of a BF since it satisfy the requirement of reducing raw material costs, pollution and also satisfy the need to extend the life of ageing coke ovens. The injection of the pulverized coal into the BF results into (i) increase in the productivity of the BF, i.e. the amount of hot metal (HM) produced per day by the BF, (ii) reduce the consumption of the more expensive coking coals by replacing coke with cheaper soft coking or thermal coals, (iii) assist in maintaining furnace stability, (iv) improve the consistency of the quality of the HM and reduce its silicon (Si) content, and (v) reduce greenhouse gas emissions. In addition to these advantages, use of the PCI in the BF has proved to be a powerful tool in the hands of the furnace operator to adjust the thermal condition of the furnace much faster than what is possible by adjusting the burden charge from the top. Schematic diagram of a BF tuyere showing a pulverized coal injection lance is at Fig 1. Fig 1 Schematic diagram of a BF tuyere showing a pulverized coal injection lance Several types of coals are being used for PCI in the BF. In principle, all types of coals can be used for injection in BF, but coking coals are not used for injection since they are costly, have lower availability and are needed for the production of coke. Also, if coking coals are used for injections in BF, They lead to tuyere coking. Hence, coals used for injection...

Quality of Lime for Steelmaking in Converter Sep08

Quality of Lime for Steelmaking in Converter...

Quality of Lime for Steelmaking in Converter Lime is a white crystalline solid with a melting point of 2572 deg C. It is a basic oxide and is used to react with the acidic oxides (e.g. silica). It is calcium oxide (CaO) produced on heating (calcination) of limestone (CaCO3) to a temperature of 900 deg C and above (usually 1100 deg C). CaCO3(s) + heat = CaO(s) + CO2 (g) This reaction is reversible. Calcium oxide reacts with carbon dioxide to form calcium carbonate. The reaction is driven to the right by flushing of carbon dioxide from the mixture as it is released. Hydrated lime Ca(OH)2 is formed by reaction of lime with water (slaking). Hydrated lime is also known as slaked lime. CaO + H2O = Ca(OH)2 + heat Lime as a basic flux in steel production and it plays an important role in the sequence of metallurgical reactions taking place in a converter. Steel is produced from hot metal by oxidizing sulphur (S), phosphorus (P), carbon (C), silicon (Si), manganese (Mn), and other impurities so that they can enter the slag or gas phases, thus separating from the metal phase. Lime in steelmaking is mainly used to produce slag for the removal of these harmful elements in liquid bath and optimize the quality of liquid steel. The basic oxygen process oxidizes impurities in an oxygen converter also known as basic oxygen furnace (BOF) where the hot metal comes in contact with oxygen. Oxidized impurities of the hot metal are absorbed in a slag, which is formed with the help of calcined lime. Metallurgical lime in the fifties consisted of a mixture of particles of all sizes from very coarse to very fine, with additional components such as silicon dioxide and sulphur concentrated...