Ferro-Silicon

Ferro-Silicon Ferro-silicon (Fe-Si) is a metallic ferro-alloy having iron (Fe) and silicon (Si) as its main elements. In commercial terminology It is defined as a ferro-alloy containing 4 % or more of Fe, more than 8 % but not more than 96 % of Si, 3 % or less phosphorus (P), 30 % or less of manganese (Mn), less than 3 % of magnesium (Mg), and 10 % or less any other element. However, the regular grades of the ferro-alloy normally contain Si in the range of 15 % to 90 %. The usual Si contents in the Fe-Si available in the market are 15 %, 45 %, 65 %, 75 %, and 90 %. The remainder is Fe and minor elements. The minor elements, such as aluminum (Al), calcium (Ca), carbon (C), manganese (Mn), phosphorus (P), and sulphur (S) are present in small percentages in Fe-Si. Commercially, Fe-Si is differentiated by its grade and size. Fe-Si grades are defined by the percentages of Si and minor elements contained in the product. The principal characteristic is the percentage of Si contained in the ferro-alloy and the grades are referred to primarily by reference to that percentage. Hence 75 % Fe-Si contains around 75 % of Si in it. Fe-Si grades are further defined by the percentages of minor elements present in the product. ‘Regular grade 75 % Fe-Si’ denote that the product containing the indicated percentages of Si and recognized maximum percentages of minor elements. Other grades of Fe-Si differ from regular grades by having more restrictive limits on the content of elements such as Al, titanium (Ti), and/or Ca in the ferro-alloy. Fe-Si is also produced in a grade that contains controlled amounts of minor elements for the purpose of adding them to...

Production of Ferro-Silicon Jun27

Production of Ferro-Silicon...

Production of Ferro-Silicon Ferro-silicon (Fe-Si) is a ferro-alloy having iron (Fe) and silicon (Si) as its main elements. The ferro-alloy normally contains Si in the range of 15 % to 90 %. The usual Si contents in the Fe-Si available in the market are 15 %, 45 %, 65 %, 75 %, and 90 %. The remainder is Fe, with around 2 % of other elements like aluminum (Al) and calcium (Ca). Fe-Si is produced industrially by carbo-thermic reduction of silicon dioxide (SiO2) with carbon (C) in the presence of iron ore, scrap iron, mill scale, or other source of iron. The smelting of Fe-Si is a continuous process carried out in the electric submerged arc furnace (SAF) with the self-baking electrodes. Fe-Si (typical qualities 65%, 75% and 90% silicon) is mainly used during steelmaking and in foundries for the production of C steels, stainless steels as a deoxidizing agent and for the alloying of steel and cast iron. It is also used for the production of silicon steel also called electrical steel. During the production of cast iron, Fe-Si is also used for inoculation of the iron to accelerate graphitization. In arc welding Fe-Si can be found in some electrode coatings. The ideal reduction reaction during the production of Fe-Si silicon is SiO2+2C=Si+2CO. However the real reaction is quite complex due to the different temperature zones inside the SAF. The gas in the hottest zone has a high content of silicon mono oxide (SiO) which is required to be recovered in the outer charge layers if the recovery of Si is to be high. The recovery reactions occur in the outer charge layers where they heat the charge to a very high temperature. The outlet gas form the furnace contains SiO2 which can...