Synthetic Slag for Secondary Steelmaking...

Synthetic Slag for Secondary Steelmaking Synthetic slag consists of prepared mixture of several individual oxides which is used during secondary steelmaking to assist the steel treatment in the ladle from the viewpoint of effective refinement. Synthetic slag practice is normally used to obtain clean steels and also for the desulphurization of the liquid steel. Secondary steelmaking is a critical quality control step between the primary steelmaking and the continuous casting of the liquid steel. A key feature for success with the secondary steelmaking processes is the slag control. Use of synthetic slag which is specifically designed to have the required chemical composition and physical properties helps in the slag control. The  desirable properties of the synthetic slag include (i) slag is to have high sulphide capacity, (ii) it is to be basic in nature, (iii) it is to be fluid to obtain faster reaction rates, and (iv) it is not to cause excessive refractory wear. The secondary steelmaking slag is in liquid form in the ladle and floats on the surface of liquid steel which is usually at temperature of 1,600 deg or higher. It acts like a sponge to absorb the impurities consisting mainly of sulphur and non-metallic inclusions. The design of the slag is a critical step impacting the efficiency of the steel refining processes during the secondary steelmaking. Slag regime in secondary steelmaking significantly influences the final quality of the produced steel, particularly with respect to the achieved desulphurization of steel. One of the possibilities for influencing the slag regime is the application of synthetic slags to the ladle slag, formed from slag-making additions during the liquid steel tapping. Synthetic slag practice during secondary steelmaking maximizes the efficiency of the steel refining process by (i) improving steel quality, (ii) improving productivity,...

Lead in Steels

Lead in Steels  Lead (Pb) (atomic number 82 and atomic weight 207.21) has density of 11.34 gm/cc. Melting point of Pb is 327.5 deg C and boiling point is 1749 deg C. The phase diagram of the Fe-Pb binary system is at Fig 1. Pb has a face centered cubic (f.c.c.) crystal structure.  Fig 1 Fe-Pb binary system Pb is only slightly soluble in liquid or solid steel. When added , Pb does not remain in the metal but it remains separate from and mechanically dispersed in the steel  as submicroscopic metallic inclusions when it solidifies. It does not change the mechanical properties of the steel appreciably. The sole function of Pb is to improve the machinability of steel. This accounts for the wide use of Pb for high strength steel for which machinability is required. Also, Pb only slightly influences mechanical properties of steel. However, with the growing consciousness of environmental issues in recent years, there is a tendency toward eliminating Pb because it is seen to be one of the pollutants of the environment. Addition agents and addition practice Elemental Pb is available as cored wire (Pb micro shots), pellets and fine shots suitable for addition in the continuous casting tundish, ladle metallurgical furnace, or degassing furnace. Alloys containing bismuth (bi) are also available for addition. Addition of Pb in liquid steel is carefully controlled to ensure its even dispersion in the solidifying steel. Segregation of Pb can be an issue. Pb segregation in steel  can lead to problems during cold working and machining of steel. Due to this Pb bearing steels are normally checked for segregation. The steel sample is usually heated at 700 deg C and is examined for uniform distribution of Pb. This test is known as sweat test. Pb does not...

Zirconium in Steels

Zirconium in Steels  Zirconium (Zr) (atomic number 40 and atomic weight 91.22) has density of 6.52 gm/cc. Melting point of Zr is 1855 deg C and boiling point is 4377 deg C. Zr  has a hexagonal close pack crystal structure. The phase diagram of the Fe-Zr binary system is given at Fig 1. Fig 1 Fe-Zr binary phase diagram Zr is being used as a alloying element in steels since the early 1920s, but has never been universally employed, as have niobium (Nb), titanium(Ti), and vanadium (V). Historically, the main use of additions of Zr to steel was for combination preferentially with sulphur, to avoid the formation of manganese sulphide (MnS), known to have a deleterious influence of the impact toughness of wrought and welded steel. These days there has been a renewed interest in the addition of Zr to the micro alloyed steels. Zr is highly reactive and has a strong affinity, in decreasing order, for oxygen (O), nitrogen (N), sulphur (S), and carbon (C). Its affinity for O, S, and N is the primary reason for its use in steelmaking. Due to this property it controls  the nonmetallic inclusions of sulphides and oxy-sulphides. it is also used for the fixation of N mainly in boron (B) steels. Zr also inhibits grain growth and prevents strain aging but its use for either of these reasons is limited. Because of its relatively high price and also due to the availability of cheaper replacements, general acceptance of Zr for use as an alloying element in steels is limited. Addition agents Te Zr addition agents in the liquid steel are iron-silicon-zirconium (FeSiZr) alloy, ferrozirconium (Fe-Zr) alloy, Zr alloy scrap and pure Zr sponge. Out of these the most popular addition agent is FeSiZr since it is...

The Iron-Carbon Phase Diagram Mar11

The Iron-Carbon Phase Diagram...

The Iron-Carbon Phase Diagram In their simplest form, steels are alloys of Iron (Fe) and Carbon (C). The study of the constitution and structure of iron and steel start with the iron-carbon phase diagram. It is also the basis understanding of the heat treatment of steels. The Iron Carbon diagram is shown in Fig. 1. Fig 1 Iron Carbon phase diagram The diagram shown in Fig 1 actually shows two diagrams i) the stable iron-graphite diagram (dashed lines) and the metastable Fe-Fe3C diagram. The stable condition usually takes a very long time to develop specially in the low temperature and low carbon range hence the metastable diagram is of more interest. Many of the basic features of this irpn carbon system also influence the behavior of alloy steels. For example, the phases available in the simple binary Fe-C system are also available in the alloy steels, but it is essential to examine the effects of the alloying elements on the formation and properties of these phases. The iron-carbon diagram provides a solid base on which to build the knowledge of both plain carbon and alloy steels. There are some important metallurgical phases and micro constituents in thr iron carbon system. At the low-carbon end is the ferrite (?-iron) and austenite (?-iron). Ferrite can at most dissolve 0.028 wt% C at 727 deg C and austenite (?-iron) can dissolve 2.11 wt% C at 1148 deg C. At the carbon-rich side there is cementite (Fe3C). Between the single-phase fields are found regions with mixtures of two phases, such as ferrite & cementite, austenite & cementite, and ferrite & austenite. At the highest temperatures, the liquid phase field can be found and below this are the two phase fields liquid & austenite, liquid & cementite, and liquid...