Top Gas Recycling Blast Furnace Process Mar09

Top Gas Recycling Blast Furnace Process...

Top Gas Recycling Blast Furnace Process In the area of production of hot metal (HM) by blast furnace (BF), the most promising technology to significantly reduce the CO2 (carbon di-oxide) emission is recycling of CO (carbon mono oxide) and H2 (hydrogen) from the gas leaving the BF top. CO and H2 content of the top BF gas has a potential to act as reducing gas elements, and hence their recirculation to the BF is considered as an effective alternative to improve the BF performance, enhance the utilization of C (carbon) and H2, and reduce the emission of CO2. This ‘top gas recycling’ (TGR) technology is mainly based on lowering the usage of fossil C (coke and coal) with the re-usage of the reducing agents (CO and H2), after the removal of the CO2 from the top BF gas. This leads to lower the energy requirements. Because of the advantages of high productivity, high PCI (pulverized coal injection) rate, low fuel rate, and low CO2 emission etc., the TGR-BF process is considered to be one of the promising ironmaking processes in future. In TGR-BF, oxygen (O2) is blown into the BF instead of hot air to eliminate nitrogen (N2) in the top BF gas. Part of the top BF gas containing CO and H2 is utilized again as the reducing agent in the BF. CO2 from the BF top gas is captured and then stored. Several recycling processes have been suggested, evaluated or practically applied for different objectives. These processes are distinguished by (i) with or without CO2 removal, (ii) with or without preheating, and (iii) the position of injection. The concept of the TGR-BF (Fig 1) involves many technologies which include (i) injection of reducing top BF gas components CO and H2 in the...

Understanding Blast Furnace Ironmaking with Pulverized Coal Injection Nov04

Understanding Blast Furnace Ironmaking with Pulverized Coal Injection...

Understanding Blast Furnace Ironmaking with Pulverized Coal Injection Injection of pulverized coal in the blast furnace (BF) was initially driven by high oil prices but now the use of pulverized coal injection (PCI) has become a standard practice in the BF operation since it satisfies the requirement of reducing raw material costs, pollution and also satisfies the need to extend the life of ageing coke ovens. The injection of the pulverized coal into the BF results into (i) increase in the productivity of the BF, i.e. the amount of hot metal (HM) produced per day by the BF, (ii) reduce the consumption of the more expensive coking coals by replacing coke with cheaper soft coking or thermal coals, (iii) assist in maintaining furnace stability, (iv) improve the consistency of the quality of the HM and reduce its silicon (Si) content, and (v) reduce greenhouse gas emissions. In addition to these advantages, use of the PCI in the BF has proved to be a powerful tool in the hands of the furnace operator to adjust the thermal condition of the furnace much faster than what is possible by adjusting the burden charge from the top. Pulverized coal has basically two roles in the operation of a BF. It not only provides part of the heat required for reducing the iron ore, but also some of the reducing gases. For understanding the HM production in a BF with the injection of pulverized coal, it is necessary to understand what is happening inside the BF as well as the chemical reactions and the importance of permeability within the furnace and how the raw materials can affect this parameter. The BF is essentially a counter-current moving bed furnace with solids (iron ore, coke and flux), and later molten...

Understanding Pulverized Coal Injection in Blast Furnace Oct21

Understanding Pulverized Coal Injection in Blast Furnace...

Understanding Pulverized Coal Injection in Blast Furnace Pulverized coal injection (PCI) is a well-established technology for hot metal (HM) production in a blast furnace (BF). It is practiced in most of the BFs and all the new BFs are normally built with PCI capability. The composition and properties of the coal used for injection can influence the operation, stability and productivity of the BF, the quality of the HM, and the composition of the BF gas. The coals being used for the PCI are described in the article under link ‘http://ispatguru.com/coal-for-pulverized-coal-injection-in-blast-furnace/’. The critical aspects of PCI systems include coal preparation, its storage and distribution to ensure uniform feed of coal to each tuyere without fluctuations in the coal delivery rate and its combustion through lance design and oxygen (O2) injection. Coal preparation Pulverization of coal is carried out in a single or multiple grinding mills (pulverizers) depending on the requirements. Grinding and distribution of the coal to the injection lances constitute a major operating cost. Coal reclaimed from coal storage is screened for the removal of the foreign material and any large lump of coal is crushed. The coal is then fed into the mill where it is pulverized and dried. Coal of the required size is transported out of the mill by the hot gas stream, collected in a bag filter and conveyed to the storage bins. Grinding and transport are carried out under an inert atmosphere to minimize the risk of ignition of the dry coal particles. The resultant particle size distribution of the pulverized coal affects it handleability in pneumatic transport equipment and, at high injection rates, its combustibility. Pulverizers grind coal to one of the two size fractions namely (i) pulverized coal where around 70 % to 80 % of...

Coal for Pulverized Coal Injection in Blast Furnace...

Coal for Pulverized Coal Injection in Blast Furnace Injection of pulverized coal in the blast furnace (BF) was initially driven by high oil prices but now the use of pulverized coal injection (PCI) has  become a standard practice in the operation of a BF since it satisfy the requirement of reducing raw material costs, pollution and also satisfy the need to extend the life of ageing coke ovens. The injection of the pulverized coal into the BF results into (i) increase in the productivity of the BF, i.e. the amount of hot metal (HM) produced per day by the BF, (ii) reduce the consumption of the more expensive coking coals by replacing coke with cheaper soft coking or thermal coals, (iii) assist in maintaining furnace stability, (iv) improve the consistency of the quality of the HM and reduce its silicon (Si) content, and (v) reduce greenhouse gas emissions. In addition to these advantages, use of the PCI in the BF has proved to be a powerful tool in the hands of the furnace operator to adjust the thermal condition of the furnace much faster than what is possible by adjusting the burden charge from the top. Schematic diagram of a BF tuyere showing a pulverized coal injection lance is at Fig 1. Fig 1 Schematic diagram of a BF tuyere showing a pulverized coal injection lance Several types of coals are being used for PCI in the BF. In principle, all types of coals can be used for injection in BF, but coking coals are not used for injection since they are costly, have lower availability and are needed for the production of coke. Also, if coking coals are used for injections in BF, They lead to tuyere coking. Hence, coals used for injection...

Non Coking Coal for Iron Production...

Non Coking Coal for Iron Production A non-coking coal is that coal which when heated in the absence of air leaves a coherent residue. This residue does not possess the physical and chemical properties of the coke and is not suitable for the manufacture of coke. Non coking coal like any other coal is an organic rock (as opposed to most other rocks in the earth’s crust, such as clays and sandstone, which are inorganic). It contains mostly carbon (C), but it also has hydrogen (H2), oxygen (O2), sulphur (S) and nitrogen (N2), as well as some inorganic constituents which are known as ash (minerals) and water (H2O). Coal was formed from prehistoric plants, in marshy environments, some tens or hundreds of millions of years ago. The presence of water restricted the supply of oxygen and allowed thermal and bacterial decomposition of plant material to take place, instead of the completion of the carbon cycle. Under these conditions of anaerobic decay, in the so-called biochemical stage of coal formation, a carbon-rich material called ‘peat’ was formed. In the subsequent geochemical stage, the different time-temperature histories led to the formations of coal of widely differing properties. These formations of coal are lignite (65 % to 72 % carbon), sub-bituminous coal (72 % to 76 % carbon), bituminous coal (76 % to 90 % carbon), and anthracite (90 % to 95 %) carbon. The degree of change undergone by a coal as it matures from peat to anthracite is known as coalification. Coalification has an important bearing on the physical and chemical properties of coal and is referred to as the ‘rank’ of the coal. Ranking is determined by the degree of transformation of the original plant material to carbon. The ranks of coals, from those with...