Romelt Process for Ironmaking Mar20

Romelt Process for Ironmaking...

Romelt Process for Ironmaking Romelt process for ironmaking is a smelting reduction process for the production of hot metal (liquid iron). The process has been developed by The National University of Science & Technology ‘MISiS’, Russia (formerly known as Moscow Institute of Steel and Alloys). The development work of the process started in 1978 when a group of ‘MISiS’ scientists led by Vladimir Roments began working on designing of this process. The first patent in Russia was obtained in 1979. A pilot production plant having a hearth area of 20 sq m and with a capacity 40,000 tons of hot metal per year was commissioned in 1985 at the Novolipetsk Iron and Steel Works (NLMK). The pilot plant was designed by Moscow Gipromez. The design of the reliable Vanyukov’s furnace was taken as the prototype for this new method of manufacturing hot metal. The process was tested and mastered at this pilot plant between 1985 and 1998. During this period forty-one campaigns were carried out, each of which included startup and slowdown, with full tapping of hot metal and slag from the furnace. More than 40,000 tons of hot metal was produced in the pilot plant during this period and used further in basic oxygen furnace (BOF) for steelmaking. The first industrial plant for hot metal production based on Romelt technology is being built at Myanmar. The plant has been designed by Leningrad Gipromez and being supplied by Tyazpromexport, a subsidiary of Rostec. This plant has a capacity of 200,000 tons per year and is based on the processing of iron ore without its beneficiation from Pang Pet ore deposit. Pang Pet ore deposits have Fe content of up to 29 %. The plant will use non-coking coal from Kye Thee coal fields. The...

Corex Process for Production of Iron Feb22

Corex Process for Production of Iron...

Corex Process for Production of Iron During the late twentieth century, several new initiatives have been taken for the development of the smelting reduction technology which can become alternative route for the production of liquid iron (hot metal) since the conventional blast furnace (BF) ironmaking depends on metallurgical coal, which is required for producing BF coke needed for the production of hot metal in the blast furnace. Metallurgical coal is not only costly but is associated with environmental issues during its conversion to BF coke in the coke oven batteries. Smelting reduction process is that process which is based on smelting reduction technology and hence in this process the production of hot metal is carried out without the use of metallurgical coke. Corex process is one of these initiatives. It is the first and the only commercially established smelting-reduction process based on non-coking coal which is available as an alternative route to the blast furnace for the production of hot metal. Corex process was developed by the Austrian technology supplier VOEST in the late 1970s, and its feasibility was confirmed during the 1980s. The first pilot plant was installed in Kehl, Germany, in 1981. Commercialization, however, was reached together with the South African steelmaker ISCOR where the C-1000 (C – 0.5 M) module was commissioned in November 1989 at its Pretoria works. This first generation reactor which is called melter-gasifier had a hearth diameter of 5.5 m and a hot metal production rate ranging from 40 tons per hour to 60 tons per hour. The plant rated capacity was 300,000 metric tons per year. The general applicability of this first generation process was limited and a lot of technical problems had to be solved. Nevertheless, it helped to overcome the critical demonstration stage for...

Non Coking Coal for Iron Production...

Non Coking Coal for Iron Production A non-coking coal is that coal which when heated in the absence of air leaves a coherent residue. This residue does not possess the physical and chemical properties of the coke and is not suitable for the manufacture of coke. Non coking coal like any other coal is an organic rock (as opposed to most other rocks in the earth’s crust, such as clays and sandstone, which are inorganic). It contains mostly carbon (C), but it also has hydrogen (H2), oxygen (O2), sulphur (S) and nitrogen (N2), as well as some inorganic constituents which are known as ash (minerals) and water (H2O). Coal was formed from prehistoric plants, in marshy environments, some tens or hundreds of millions of years ago. The presence of water restricted the supply of oxygen and allowed thermal and bacterial decomposition of plant material to take place, instead of the completion of the carbon cycle. Under these conditions of anaerobic decay, in the so-called biochemical stage of coal formation, a carbon-rich material called ‘peat’ was formed. In the subsequent geochemical stage, the different time-temperature histories led to the formations of coal of widely differing properties. These formations of coal are lignite (65 % to 72 % carbon), sub-bituminous coal (72 % to 76 % carbon), bituminous coal (76 % to 90 % carbon), and anthracite (90 % to 95 %) carbon. The degree of change undergone by a coal as it matures from peat to anthracite is known as coalification. Coalification has an important bearing on the physical and chemical properties of coal and is referred to as the ‘rank’ of the coal. Ranking is determined by the degree of transformation of the original plant material to carbon. The ranks of coals, from those with...

Coal based Direct Reduction Rotary Kiln Process Feb14

Coal based Direct Reduction Rotary Kiln Process...

Coal based Direct Reduction Rotary Kiln Process The coal based direct reduction rotary kiln process was developed for converting iron ore directly into metallic iron without the melting of the materials. The process has the advantage of low capital expenditure and no requirement of coking coal. The metallic iron in this process is produced by the reduction of iron oxide below the fusion temperature of iron ore (1535 deg C) by utilizing carbonaceous material present in the non-coking coal. As the iron ore is in direct contact with the reducing agent throughout the reduction process, it is often termed as direct reduced iron (DRI). The reduced product having high degree of metallization shows a ‘honeycomb structure’, due to which it is often called sponge iron. Coal based DRI plants are flexible with respect to plant location since non-coking coal is widely distributed in large deposits and is easy to transport. Most plants employ reduction process which is carried out in rotary kilns. These plants use wide variety of raw materials and non-coking coal. The quality of these materials has direct bearing on the process as well as the product. Some plants do not use iron ore directly. These plants use iron ore pellets in the rotary kiln. Raw material mix consisting of iron ore, dolomite and non-coking coal is fed at the one end of the rotary kiln and is heated by coal burners to produce DRI. The product DRI along with char (sometimes called dolo char) is taken out from the other end of the kiln. Apart from this, primary air and secondary air are supplied to the kiln to initiate the combustion and sustain the reaction process in the kiln. Raw materials The main raw materials for the production of DRI by...

Coal

Coal Coal is a combustible compact black or brownish black sedimentary rock usually occurring in rock strata in layers or veins called coal beds or coal seams. It is formed from vegetation, which has been consolidated between other rock strata and altered by the combined effects of pressure and heat over millions of years to form coal seams. The harder forms can be regarded as metamorphic rock because of its exposure to elevated temperature and pressure. The quality of each coal deposit is determined by temperature and pressure and by the length of time in formation, which is referred as its ‘organic maturity’. The degree of change undergone by a coal as it matures from peat to anthracite is known as coalification. Coalification has an important bearing on the physical and chemical properties of coal and is referred to as the ‘rank’ of the coal. Ranking is determined by the degree of transformation of the original plant material to carbon. The ranks of coals, from those with the least carbon to those with the most carbon, are lignite, sub-bituminous, bituminous and anthracite. Low rank coals are typically softer, friable materials with a dull and earthy appearance. Higher rank coals are generally harder and stronger and often have a black and vitreous luster. Coal is composed primarily of carbon along with varying amounts of other elements mainly hydrogen, oxygen, nitrogen and sulphur. High-rank coals are high in carbon and therefore heat value, but low in hydrogen and oxygen. Low-rank coals are low in carbon but high in hydrogen and oxygen content. The relative amount of moisture, volatile matter, and fixed carbon content varies from one to the other end of the coalification series. The moisture and volatile matter decrease with enhancement of rank while carbon content increases i.e., carbon content is lowest in peat and highest in anthracite. The quality of...