Corrosion of Cast Irons...

Corrosion of Cast Irons Cast iron is a standard term which is used for a large family of alloys of ferrous materials. Cast iron is mainly alloy of iron (Fe) which contains higher than 2 % of carbon (C) and more than 1 % of silicon (Si). Low cost of raw materials and relative ease of production make cast iron the last cost engineering material. Cast iron can be cast into intricate shapes since it has excellent fluidity and comparatively low melting point. It can also be alloyed for improvement of corrosion resistance and strength. With suitable alloying, the corrosion resistance of cast iron can equal to or exceed that of stainless steel and nickel (Ni) based alloy. Since outstanding properties are obtained with this low cost engineering material, cast iron finds extensive use in atmospheres which need good corrosion resistance. Services in which cast iron can be used for its good corrosion resistance include water, soils, acids, alkalis, saline solutions, organic compounds, sulphur compounds, and liquid metals. In some cases, alloyed cast iron is the only economical choice for the equipment manufacture. Cast iron and the basic metallurgy The metallurgy of cast iron is similar to that of steel except that Si in sufficient quantities is present to necessitate use of the Fe-Si-C ternary phase diagram rather than the simple Fe-C binary diagram. A section of the Fe- Fe3C (iron carbide)-Si ternary diagram at 2 % Si is shown in Fig 1. Iron carbide is also known as cementite. The eutectic and eutectoid points in the Fe-Si-C diagram are both affected with the introduction of Si into the system. With normal Si in the range of 1 % to 3 % in cast irons, eutectic C percentage is related to Si percentage as...

Cast irons and their Classification...

Cast irons and their Classification  The term ‘cast iron’ represents a large family of ferrous alloys. Cast irons are multi-component ferrous alloys, which solidify with a eutectic. The major elements of cast irons are iron, carbon (2 % or more), silicon (1 % to 3 %), minor elements (less than 0.1 %), and often alloying elements (less than 0.1%). Cast iron has higher carbon and silicon contents than steel. The structure of cast iron displays a richer carbon phase than that of steel because of its higher carbon content. Cast iron can solidify according to the thermodynamically metastable Fe-Fe3C (iron carbide) system or the stable iron-graphite system depending principally on composition, cooling rate, and melt treatment. Cast iron in its basic form is a brittle material which has a very little impact strength. It has a little or practically no toughness when compared to low carbon steels.  It has a fraction of the tensile strength of low carbon steels.  When a cast iron piece fails it does not deform in a noticeable way and appears to snap apart or break in a manner consistent with a snap.  There is no early warning of a failure. The graphite phase which is pure carbon acts as a natural defect in the material.  The iron is so saturated with carbon that graphite forms (free carbon) and causes the cast iron to be weaker.  Much smaller amounts of carbon is combined with iron (Fe) in the form of iron carbide (Fe3C, cementite) which is hard and brittle. During the solidification process, when the metastable route is followed, the rich carbon phase in the eutectic is the iron carbide and when the stable solidification route is followed, the rich carbon phase is graphite. Referring only to the binary Fe-Fe3C or...

Malleable Cast Iron

Malleable Cast Iron  Malleable cast iron is essentially white cast iron which has been modified by heat treatment. It is formed when white cast iron is heated to around 920 deg C and then left to cool very slowly. Graphite separates out much more slowly in this case, so that surface tension has time to form it into spheroidal particles rather than flakes. Due to their lower aspect ratio, spheroids are relatively short and far from one another, and have a lower cross section vis-a-vis a propagating crack. They also have blunt boundaries, as opposed to flakes, which alleviates the stress concentration problems faced by the gray cast iron. In general, the properties of malleable cast iron are more like mild steel. There is a limit to how large a part can be cast in malleable cast iron, since it is made from white cast iron. The white cast iron is converted to malleable cast iron by a two stage heat treatment process to a condition having most of its carbon content in the form of irregularly shaped nodules of graphite, called temper carbon. The structure of malleable cast iron consists of ferrite, pearlite and tempered carbon as compared to the fracture inducing lamellar structure of gray cast iron. Malleable cast irons are a class of cast irons with mechanical strength properties that are intermediate to those of gray or ductile cast irons. The microstructure provides it properties that make malleable cast irons ideal for applications where toughness and machinability are required, and for components that are required to have some ductility or be malleable so that they can be bent or flexed into position without cracking. Malleable cast iron besides less sensitive to cracking has a range of features, such as higher values of...