Carbon Steels and the Iron-Carbon Phase Diagram...

Carbon Steels and the Iron-Carbon Phase Diagram Steels are alloys having elements of iron (Fe) and carbon (C). C gets dissolved in Fe during the production of steels. Pure Fe melts at a temperature of 1540 deg C, and at this temperature, C readily dissolves into the liquid iron, generating a liquid solution. When this liquid solution solidifies, it generates a solid solution, in which the C atoms are dissolved into the solid iron. The individual C atoms lie in the holes between the Fe atoms of the crystalline grains of austenite (at high temperatures) or ferrite (at low temperatures). Austenite has a face centred cubic (fcc) structure while the ferrite has a body centred cubic (bcc) structure (Fig 1). If the amount of C dissolved in the liquid iron is kept below 2.1 %, the product is steel, but if it is above this value, then the product is cast iron. Although liquid iron can dissolve C at levels well above 2.1 % C, solid iron cannot. This leads to a different solid structure for cast irons (iron with total C greater 2.1 %). In addition to C, all the types of steels contain the element manganese (Mn) and low levels of the impurity atoms of phosphorus (P) and sulphur (S). Hence, steels can be considered as alloys of three or more elements. These elements are Fe, C, other element/elements additions, and impurities. It is normal to classify steel compositions into two categories namely (i) plain C steels, and (ii) alloy steels. In plain C steels, other elements consist only of Mn, P, and S, whereas in alloy steels, one or more additional alloying elements are added. Solid solutions are similar to the liquid solution; that is, after the solid substance is dissolved,...