Energiron Direct Reduction Technology Sep08

Energiron Direct Reduction Technology...

Energiron Direct Reduction Technology Energiron direct reduction technology is a gas based direct reduction technology. Energiron process converts iron ore pellets or lumps into metallic iron. It uses the HYL direct reduction technology developed jointly by Tenova and Danieli and is a competitive and environmentally clean solution for lowering the liquid steel production cost. It uses a simple plant configuration, has flexibility for using different sources of reducing gases and has a very efficient and flexible use of iron ores. A key factor in many of the process advantages is directly related to its pressurized operation. Energiron is the name of the direct reduced iron (DRI) product produced by the Energiron direct reduction technology. The product is so named since it carries substantial energy with it which is realized during the steel making process. Energiron is a highly metallized product with the carbon (C) content which is controllable in the range of 1.5 % to 5.0 %. The higher C content of Energiron generates chemical energy in the electric arc furnace (EAF) melting process. The uniquely stable characteristic of Energiron DRI makes it a product which can be safely and easily transported without briquetting, following standard IMO (International Maritime Organization) guidelines. The process is flexible to produce three different product forms, depending on the specific requirements of each user. The three forms of Energiron DRI are cold DRI, HBI (hot briquetted iron) or hot DRI (‘Hytemp’ iron with discharge temperature greater than 700 deg C). Cold DRI discharge is normally used in an adjacent steel melt shop close to the direct reduction plant. It can also be shipped and exported. HBI is the DRI which is discharged hot, briquetted, and then cooled. It is a merchant product usually meant for overseas export. Hytemp Energiron...

HYL Process for Direct Reduction of Iron Ore Apr22

HYL Process for Direct Reduction of Iron Ore...

HYL Process for Direct Reduction of Iron Ore HYL process is designed for the conversion of iron ore (pellet/lump ore) into metallic iron, by the use of reducing gases in a solid-gas moving bed reactor. Oxygen (O2) is removed from the iron ore by chemical reactions based on hydrogen (H2) and carbon monoxide (CO) for the production of highly metallized direct reduced iron (DRI)/hot briquetted iron (HBI). HYL process is presently marketed under ‘Energiron’ trademark. HYL process for direct reduction of iron ore was the fruition of research efforts begun by Hojalata y L.mina, S.A. (later known as Hylsa), at the beginning of the 1950s. After the initial evaluation of the concept, it was decided to install a process using a tunnel furnace and several runs were undertaken. The first batch was made by using an ancient furnace (which had been built to heat plate) on the 5th of July, 1950. One part of crushed ore of size ranging from 12 mm to 25 mm was mixed with 40 % coke breeze and 15 % limestone of the same granulometry as the ore. This mixture was put into clay crucibles and into 2 iron pipes, each one with a diameter of 100 mm and a length of 1 meter. 20 kg of good quality of DRI was produced. The first gas based plant, with a design capacity of 50 tons per day, was unable to reach acceptable levels of metallization. During the 18 months of its operation, it underwent several changes, including the installation of a natural gas reformer with the object of improving the reducing gas. Finally, its operation was suspended during early 1955. After this discouraging attempt, several experiments were carried out and a pilot plant was assembled to put the new...