Ironmaking by Blast Furnace and Carbon di Oxide Emissions Jan14

Ironmaking by Blast Furnace and Carbon di Oxide Emissions...

Ironmaking by Blast Furnace and Carbon di Oxide Emissions It is widely recognised that carbon di-oxide (CO2) in the atmosphere is the main component influencing global warming through the green-house effect. Since 1896 the concentration of CO2 in the atmosphere has increased by 25 %. The iron and steel industry is known as an energy intensive industry and as a significant emitter of CO2. Hence, climate change is identified by the iron and steel industry as a major environmental challenge. Long before the findings of the Inter-governmental Panel on Climate Change in 2007, major producers of iron and steel recognized that long term solutions are needed to tackle the CO2 emissions from the iron and steel industry. Therefore, the iron and steel industry has been highly proactive in improving energy consumption and reducing greenhouse gas (GHG) emissions. In the present environment of the climate change, within the iron and steel industry, there is a constant drive to reduce energy costs, reduce emissions and ensure maximum waste energy re-use. In the traditional processes for producing iron and steel, emission of CO2 is inevitable, especially for the blast furnace (BF) process, which requires carbon (C) as a fuel and reducing agent to convert iron oxide to the metallic state, and hence is the main process for the generation of CO2 in an integrated iron and steel plant. Climate policy is in fact, an important driver for further development of the ironmaking technology by BF. Critically, amongst the challenges facing the BF operation is decarbonization. Significant steps have been made by the iron and steel industry to increase the thermal efficiency of the BF operation, but ultimately there is a hard limit in decarbonization, associated with the need for C as a chemical reductant. Since the 1950s,...

Ultra Low Carbon Dioxide Steelmaking – ULCOS Jul26

Ultra Low Carbon Dioxide Steelmaking – ULCOS...

Ultra Low Carbon Dioxide Steelmaking – ULCOS  Climate change has been identified by the steel industry around the world as a major environmental challenge for more than two and a half decades. Long before the findings of the Intergovernmental Panel on Climate Change (IPCC) in 2007, major steel producers recognized that long term solutions were needed to tackle the carbon dioxide (CO2) emissions produced during the production of steel. As a result, the steel industry has been highly proactive in improving energy consumption and reducing greenhouse gas (GHG) emissions. The greenhouse gas of most relevance to the world steel industry is carbon dioxide (CO2). As per World Steel Association (WSA), on average, 1.8 tons of CO2 gas are emitted for every ton of steel produced. According to the International Energy Agency (IEA), in 2010 the iron and steel industry accounted for approximately 6.7 % of total world CO2 emissions. CO2 emissions per ton of crude steel produced are now around 50 % lower which has resulted into a dramatic reduction in climate impact for the steel sector. The best steel plants now operate close to the thermodynamics limits set by present steel production technologies. This in turn means that steel producers are limited in how much further they can improve their energy efficiency. With most major energy savings already achieved, additional large reductions in CO2 emissions are not possible using present technologies. Decreasing of the GHG (greenhouse gas) emissions further have meant introduction of breakthrough technologies. The reduction of CO2 emissions to the level that post-Kyoto policies have required ‘out of box’ thinking since it has raised specific challenges. No simple processes have been available off-the-shelf for the accomplishment of this objective. Deep paradigm shifts in the way steel is produced has to be imagined and...