Industrial Heating Furnaces and their Types...

Industrial Heating Furnaces and their Types A furnace is equipment which is used as a reactor, or for melting of metals for casting, or to heat materials to change their shape (e.g. rolling, forging etc.) or properties (heat treatment). Industrial furnaces are mainly used for carrying out the process or for the purpose of heating. Furnaces which are used for carrying out the processes are sometimes known as reactors. Industrial furnaces which do not ‘show colour’, that is, in which the temperature is below 650 deg C are sometimes called ‘ovens’. However, the dividing line between ovens and furnaces is not very sharp. As an example, coke ovens operate at temperatures above 1400 deg C. In the ceramic industry, furnaces are called ‘kilns’. In the petrochemical and chemical process industries, furnaces are termed ‘heaters’, ‘kilns’, ‘afterburners’, ‘incinerators’, or ‘destructors’. The furnace of a boiler is known as its ‘firebox’ or ‘combustion chamber. Industrial heating furnaces are insulated enclosures designed to deliver heat to loads for many forms of heat processing. Furnaces used as reactors, and melting furnaces require very high temperatures and can involve erosive and corrosive conditions. Shaping operations need high temperatures to soften materials for processes such as forging, swaging, rolling, pressing, bending, and extruding etc. Heat treating operations need midrange temperatures to physically change crystalline structures or chemically (metallurgically) alter surface compounds, including hardening or relieving strains in metals, or modifying their ductility. These include aging, annealing, normalizing, tempering, austenitizing, carburizing, hardening, malleabilizing, nitriding, sintering, spheroidizing, and stress relieving etc. Industrial processes which use low temperatures include drying, coating, polymerizing, and chemical changes etc. Industrial heating operations encompass a wide range of temperatures, which depend partly on the material being heated and partly on the purpose of the heating process and...

Carbon Steels and the Iron-Carbon Phase Diagram...

Carbon Steels and the Iron-Carbon Phase Diagram Steels are alloys having elements of iron (Fe) and carbon (C). C gets dissolved in Fe during the production of steels. Pure Fe melts at a temperature of 1540 deg C, and at this temperature, C readily dissolves into the liquid iron, generating a liquid solution. When this liquid solution solidifies, it generates a solid solution, in which the C atoms are dissolved into the solid iron. The individual C atoms lie in the holes between the Fe atoms of the crystalline grains of austenite (at high temperatures) or ferrite (at low temperatures). Austenite has a face centred cubic (fcc) structure while the ferrite has a body centred cubic (bcc) structure (Fig 1). If the amount of C dissolved in the liquid iron is kept below 2.1 %, the product is steel, but if it is above this value, then the product is cast iron. Although liquid iron can dissolve C at levels well above 2.1 % C, solid iron cannot. This leads to a different solid structure for cast irons (iron with total C greater 2.1 %). In addition to C, all the types of steels contain the element manganese (Mn) and low levels of the impurity atoms of phosphorus (P) and sulphur (S). Hence, steels can be considered as alloys of three or more elements. These elements are Fe, C, other element/elements additions, and impurities. It is normal to classify steel compositions into two categories namely (i) plain C steels, and (ii) alloy steels. In plain C steels, other elements consist only of Mn, P, and S, whereas in alloy steels, one or more additional alloying elements are added. Solid solutions are similar to the liquid solution; that is, after the solid substance is dissolved,...