Operation practices and Campaign Life of a Blast Furnace May11

Operation practices and Campaign Life of a Blast Furnace...

Operation practices and Campaign Life of a Blast Furnace The cost of rebuilding or relining a blast furnace (BF) is very high. Hence techniques to extend BF campaign lives are important and need to be pursued very actively. Large BFs usually have a slightly higher campaign output per unit volume. This difference is because larger BFs generally are of more modern design and well automated.  Since the viability of an integrated steel plant depends on a continuous supply of hot metal (HM), which in a plant with a small number of large furnaces puts great importance on long campaign life. The techniques for prolongation of BF campaign life (Fig 1) falls under the following three categories. Operational practices – The control of the BF process has a major effect on the campaign life. BF is to be operated not only for meeting the production needs but also to maximize its life. Hence it is necessary to modify operating practices as the campaign progresses and in response to the problem areas for the maximization of campaign life. Remedial actions – Once wear or damage that affects the life of the BF becomes evident, engineering repair techniques are to be used or developed to maximize campaign life. Improved designs – As improved materials and equipment are developed, these are to be incorporated into future rebuilds to extend the life of critical areas of the BF, where it is cost effective to do so.   Fig 1 Techniques for prolongation of blast furnace campaign life Operational practices for improved campaign life are discussed in this article. The operating practices affecting the BF campaign life are described below. Productivity The productivity of a BF is normally expressed in tons (t) of HM per unit BF volume (cum) per...

Design Features of an AC Electric Arc Furnace Feb24

Design Features of an AC Electric Arc Furnace...

Design Features of an AC Electric Arc Furnace  Electric arc furnace (EAF) used for steel making apply high current and low voltage electric energy to the charge materials , and thereby melt and refine them. EAF is a batch furnace which consists of a refractory lined vessel covered with a retractable roof through which electrodes enter the furnace. General features of a typical AC electric arc furnace is shown in Fig 1. Fig 1 General features of an AC electric arc furnace  EAF has a large bowl shaped body with a dish shaped hearth. The shell has a refractory lining inside. The reaction chamber of the furnace is covered from above by a removable roof made of refractory bricks held by a roof ring. It is fed with a three phase alternating current (AC) and has three graphite electrodes which are connected by flexible cables and water cooled copper tubes. The design of electric arc furnaces has changed considerably in recent years. Emphasis has been placed on making furnaces larger, increasing power input rates to the furnace and increasing the speed of furnace movements in order to minimize power off time in furnace operations. Modern steel melting shops with EAFs usually employ a mezzanine furnace installation. In this type of installation, the furnace sits on an upper level above the shop floor. The furnace is supported on a platform which can take on several different configurations. In the half platform configuration, the electrode column support and roof lifting gantry is hinged to the tiltable platform during operation and tapping. When charging the furnace, the complete assembly is lifted and swiveled. This design allows for the shortest electrode arm configuration. In the full platform design, the electrode column support and roof lifting assembly is completely...