Alloy Cast Irons

Alloy Cast Irons Alloy cast irons are the casting alloys which are based on the iron (Fe) – carbon (C) – silicon (Si) system. They contain one or more alloying elements intentionally added to improve one or more properties. The addition to the ladle of small amounts of substances such as ferrosilicon (Fe-Si), cerium (Ce), or magnesium (Mg)) that are used to control the size, shape, and/or distribution of graphite particles is termed as inoculation. The quantities of material used for inoculation neither change the basic composition of the solidified cast iron nor alter the properties of individual constituents. Alloying elements, including Si when it exceeds about 3 %, are usually added to increase the strength, hardness, hardenability, or corrosion resistance of the basic iron and are often added in quantities sufficient to affect the occurrence, properties, or distribution of constituents in the microstructure. In gray and ductile cast irons, small amounts of alloying elements such as chromium (Cr), molybdenum (Mo), or nickel (Ni) are added primarily to achieve high strength or to ensure the attainment of a specified minimum strength in heavy sections. Otherwise, alloying elements are used almost exclusively to enhance resistance to abrasive wear or chemical corrosion or to extend service life at elevated temperatures. Classification of alloy cast irons Alloy cast irons can be classified as (i) white cast irons, (ii) corrosion resistant cast irons, and (iii) heat resistant cast irons (Fig 1). Fig 1 Classification of alloy cast irons White cast irons White cast irons are so named because of their characteristically white fracture surfaces. They do not have any graphite in their microstructures. Instead, the C is present in the form of carbides, mainly of the types Fe3C and Cr7C3. Frequently, complex carbides such as (Fe,Cr)3C and (Cr,Fe)7C3,...

Cast Steels and Steel Castings...

Cast Steels and Steel Castings Steel casting is a specialized form of casting involving various types of steels. Steel castings are used when cast irons cannot deliver enough strength or shock resistance. A steel casting is the product formed by pouring liquid steel into a mould cavity. The liquid steel cools and solidifies in the mould cavity and is then removed for cleaning. Heat treatment may be needed to meet desired properties. This process provides the near net shape and mechanical properties required for meeting the specifications. The differences between steel castings and wrought steels are principally in the method of production. In the case of wrought steel cast ingots, slabs, blooms, and billets are mechanically worked to produce flat, sectional or tubular products. However, steel castings are produced in the final product (near net shape product) form without any intermediate mechanical working. The making of a steel casting is a long and complex process. A large investment in capital equipment is required for the melting of steel, manufacturing of cores and moulds and the cleaning and heat treating of castings. Additional major investments for support equipment and facilities are required for sand reclamation systems, dust collection devices and bulk material handling systems etc. Steel castings are used for vitally important components in the mining, railways, automotive, construction, military, and various industries including oil and gas industries. Steel castings are specified for applications which require weldability, abrasion resistance, high strength, low and high temperature service and corrosion resistance. Though there are large numbers of steel foundries, yet due to the diversity of market requirements such as size, tolerances, chemistry, volume, etc., a single foundry cannot serve all of the market and each foundry tends to specialize in a portion of the total market. Some of the specialized...

Tool Steels

Tool Steels The term tool steel is a generic description for those steels which have been developed specifically for tooling applications. These steels are used for making tools, punches and dies etc. Tools used for working steels and other metals must be stronger and harder than the steels or the materials they cut or form. Normally tool steels are known for their distinctive toughness, resistance to abrasion, their ability to hold a cutting edge, and/or their resistance to deformation at elevated temperatures (red hardness). Some of the operations that tool steels are used for include drawing, blanking, mould inserts, stamping, metal slitting, forming and embossing, although their use is not limited to just these areas. The metallurgical characteristics of various compositions of tool steels are extremely complex. There are hundreds of different types of tool steels available and each may have a specific composition and end use. Tool steels are mainly medium to high carbon steels with specific alloying elements added in different amounts to provide it special characteristics. The carbon in the tool steel is provided to help harden the steel to greater hardness for cutting and wear resistance while alloying elements are added to the tool steel for providing it greater toughness or strength. In some cases, alloying elements are added to retain the size and shape of the tool during its heat treat hardening operation or to make the hardening operation safer and to provide red hardness to it so that the tool retains its hardness and strength when it becomes extremely hot. Various alloying elements in addition to carbon are chromium (Cr), cobalt (Co), manganese (Mn), molybdenum (Mo), nickel (Ni), tungsten (W), and vanadium (V). The effect of the alloying elements on the properties of tool steels is as follows. Chromium –...

Nitrogen in Steels May23

Nitrogen in Steels

Nitrogen in Steels All steels contain some nitrogen which can enter the steel as an impurity or as an intentional alloying addition. The quantity of nitrogen in steels normally depends on the residual level arising from the steelmaking processes or the amount aimed in case of deliberate addition. There are significant differences in residual levels of nitrogen in steels produced from the two main steelmaking processes. Basic oxygen furnace (BOF) process generally results into lower residual nitrogen in steels, typically in the range of 30 to 70 ppm while electric arc furnace (EAF) process results into higher residual nitrogen, typically in the range of 70 to 110 ppm. Nitrogen is added to some steels (e.g. steels containing vanadium) to provide sufficient nitrogen for formation of nitride to achieve higher strength. In such steels nitrogen levels can increase to 200 ppm or higher. Nitrogen in the liquid steel is present in the form of solution. During the solidification of steel in continuous casting, three nitrogen related phenomena can happen. These are Formation of blow holes Precipitation of one or more nitride compounds Solidification of nitrogen in interstitial solid solution. The maximum solubility of nitrogen in liquid iron is around 450 ppm, and less than 10 ppm at ambient temperature (Fig 1). The presence of significant quantities of other elements in liquid iron affects the solubility of nitrogen. Mainly the presence of dissolved sulfur and oxygen limit the absorption of nitrogen because they are surface active elements. Fig 1 Solubility of nitrogen in iron Nitrogen is generally considered as undesirable impurity which causes embrittlement in steels and affects strain aging. However nitrogen produces a marked (intersititial solid solution) strengthening when diffused into the surface of the steel, similar to the strengthening observed during case hardening (Nitriding)....