Gravity separation and Ore Beneficiation Gravity separation is the oldest known ore beneficiation technique and is practiced extensively in ‘Nature’. Earliest recorded human use of gravity separation was recovery of gold by panning from the Upper Nile by ancient Egyptians, dating back to 1900 BCE. Gravity separation is a physical process which consists of the separation of different mineral types in the ore from one another based on differences in their specific gravities using the force of gravity, which can be influenced by one or more of other forces such as centrifugal force, resistance to motion by a fluid (e.g. air, water) etc. Hence, besides gravity, other factors, such as size, shape etc., also have an influence on the relative motion and thus in the separation. The effect of centrifugal action on the gravity force is given at Fig 1. It can be seen that as the gravity force increases, settling velocity of smaller particles becomes higher. Fig 1 Effect of centrifugal force on gravity force Separation of the ore particle by gravity is dependent on two factors namely (i) settling rate of the particles, and (ii) difference in specific gravity when compared against the medium in which they are being separated, this gives differential settling rate and has been termed the ‘concentration criteria’.Settling rate of a particle is dictated by ‘Stoke law’ and is equal to kd2g(Ds-Df), where k is a constant, d is particle diameter, g is force of gravity, and Ds is the specific gravity of solid and Df is the specific gravity of the fluid medium. The ‘concentration criteria’ (CC) gives an idea of the amenability of separation of two ore particles and can be expressed by (Dh-Df)/(Dg-Df) where Dh is the specific gravity of heavier component of the ore,...

## Low grade Iron Ore Beneficiation and the Process of Jigging...

posted by Satyendra

Low grade Iron Ore Beneficiation and the Process of Jigging Iron ore resources are getting consumed at an accelerated rate because of the growth in the production of iron and steel. Due to this reason the availability of high grade iron ore is reducing and the supply of high grade iron ore to iron and steel plants is declining sharply. Hence, the scenario is steadily shifting towards the use of low grade iron ores and slimes which are stock piled in the mine’s sites for years. These dumped slimes also, in fact, falls in the category of low grade iron ore. Also, some of the ores of iron have a complex mineralogical composition and do not respond to conventional beneficiation techniques. Modern beneficiation processes allow for effective and low cost upgrading of lump, fines and ultra-fines of such ores. Since the iron ores consist of several compositions, mineralogies, shapes, and sizes, so there is no ‘one size fits all’ approach to the beneficiation of iron ore. Most of the ‘run-of-mine’ (ROM) iron ore contain a large percentage of other materials which need to be removed through the process of beneficiation before the ore attains the specifications needed for its use. The extent of the beneficiation techniques employed depends on the level and nature of diluents and the form of distribution of the gangue and impurities in the ore structure. Liberation of ore is an essential step for making it responsive to the beneficiation techniques. For selection of appropriate techniques, it is necessary to carry out first the mineralogical assessment of the ore so as to get the insight into the ore and to know the gangue association, and grain size etc. There are several issues relating to categorization and beneficiation of low grade iron...

## Beneficiation of Iron Ores...

posted by Satyendra

Beneficiation of Iron Ores Iron ore is a mineral which is used after extraction and processing for the production of iron and steel. The main ores of iron usually contain Fe2O3 (70 % iron, hematite) or Fe3O4 (72 % iron. magnetite). Ores are normally associated with unwanted gangue material. Grade of iron ore is usually determined by the total Fe content in the ore. Run of mines ores after dry or wet sizing, if it contains normally greater than 62 % of Fe, are known as ‘natural ore’ or ‘direct shipping ore’ (DSO). These ores can be directly used in the production of iron and steel. All other ores need beneficiation and certain processing before they are used in the production of iron and steel. Low grade iron ores cannot be used as such for the production of iron and steel and need to be upgraded to reduce its gangue content and increase its Fe content. The process adopted to upgrade the Fe content of iron ore is known as iron ore beneficiation (IOB). However, Iron ores from different sources have their own peculiar mineralogical characteristics and require the specific beneficiation and metallurgical treatment to get the best product out of it. Also for effective beneficiation treatment, effective crushing, grinding, and screening of the ore is necessary for which suitable crushing, grinding, and screening technologies are to be employed. The choice of the beneficiation treatment depends on the nature of the gangue present and its association with the ore structure. Several methods/techniques such as washing, jigging, magnetic separation, gravity separation, and flotation etc. are used to enhance the Fe content of the Iron ore and to reduce its gangue content. These techniques are used in various combinations for the beneficiation of iron ores. For...