Liquefied Petroleum Gas- its Characteristics and Safety Requirements...

Liquefied Petroleum Gas- its Characteristics and Safety Requirements  Liquefied petroleum gas is  a gas used in steel plants as a fuel gas for heating in various furnaces and in flame cutting machines of continuous casting machines. It is popularly known by its  abbreviation or short form which is LPG. LPG is also used for oxy-LPG gas cutting and welding. Sometimes it is used for carburization of steel, flame heating, flame gouging, flame hardening, flame cleaning, and flame straightening. Liquid petroleum gases were discovered in 1912 when Dr. Walter Snelling, an American scientist, realized that these gases could be changed into liquids and stored under moderate pressure. From 1912 and 1920, LP gas uses were developed. The first LPG cook stove was made in 1912, and the first LPG  fueled car was developed in 1913. The LPG industry began sometime shortly before World War 1. At that time, a problem in the natural gas distribution process cropped up. Gradually facilities were built to cool and compress natural gas, and to separate the gases that could be turned into liquids (including propane and butane). LPG was sold commercially by 1920. Like all fossil fuels, LPG is a non renewable source of energy. It is extracted from crude oil and natural gas. It is a safe, clean burning, reliable, high calorific value fuel. The main composition of LPG are hydrocarbons containing three or four carbon atoms. The normal components of LPG thus, are propane (C3H8) and butane (C4H10) (Fig 1). Small concentrations of other hydrocarbons may also be present. Depending on the source of the LPG and how it has been produced, components other than  hydrocarbons may also be present. CAS number of LPG gas is 68476-85-7  while its UN number is 1075. CAS number for propane is...

Blast Furnace gas generation and usage Mar18

Blast Furnace gas generation and usage...

Blast Furnace gas generation and usage Blast furnace (BF) gas is a gaseous by product which is generated while producing hot metal (liquid iron) in a blast furnace. The operation of the blast furnace is controlled to produce hot metal of a specified quality and during this production BF gas comes out from the furnace top. During production of hot metal in a blast furnace, hot air blast is blown in the furnace through the tuyeres. The oxygen of the blast reacts with the coke. The gas produced by this reaction moves up the furnace shaft which has been charged with ores, fluxes and coke. After a number of chemical reactions and a travel of around 25-30m the BF gas comes out of the furnace as a heated, dust laden and lean combustible gas. Around 1500-1700 Cu m/ton of hot metal of BF gas is generated during the process. Though the purpose of partial combustion of carbon in a blast furnace is to remove the oxygen from the ore but the volume of gas generated in a blast furnace makes the blast furnace as a gas producer. The percentage of CO and CO2 in BF gas is directly related to the amount of carbon in the charged coke and amount of CO2 in the charged flux (Limestone and dolomite). The coke rate (The rate of carbon consumption) in the blast furnace depends mainly upon the type of the hot metal to be made, the chemical and the physical characteristics of the charged materials, the distribution of the materials in the furnace stack, the temperature and the oxygen enrichment of the hot air blast. The total amount of CO+CO2 gases by volume in the BF gas at the furnace top is around 40% of the...