Energy Management in Small and Medium sized Re-rolling mills...

Energy Management in Small and Medium sized Re-rolling mills Energy consumption in small and medium sized re-rolling mills takes place in two forms namely (i) electrical energy, and (ii) fuel or heat energy. Electrical energy is used directly in main rolling process for shaping of hot billets into rolled product (rolling mill, and shears etc.), in reheating furnace (coal pulverizer, blower, and pusher etc.) and also in auxiliary (roll turning machines, pumps, man coolers, overhead crane etc.), and shop lighting. Fuel energy is used in the reheating furnace for raising the temperature of the feed material to desired temperatures (generally 1150 deg C–1250 deg C). The division of the energy in these two forms normally varies from mill to mill based on the practices employed as well facilities installed in the re-rolling mills in SME (small and medium enterprise) sector. However, the share of electrical energy in small and medium sized mill generally varies in the range 20 % to 30 %. Consumption of fuel energy takes the major share of the energy consumption and usually constitutes 70 % to 80 %. From a theoretical perspective, the energy in hot rolling is primarily determined by the requirements of reheating of feed material. The theoretical energy for deformation is only 0.02 GJ/ton (around 5000 kcal/ton), compared to 0.83 GJ/ton (around 200,000 kcal /ton) for heating billets when charged cold in the reheating furnace. Though it is not technically feasible to achieve theoretical energy consumption figures, but the energy efficiency of the rolling mill is depends upon how close it is to the theoretical consumption. Management of electrical energy consumption Out of the total electrical energy consumed by a re-rolling mill, the share of the process of rolling is in the range of around 60 %...

Rolling of Steel in small and medium sized Rolling Mills Jun09

Rolling of Steel in small and medium sized Rolling Mills...

Rolling of Steel in small and medium sized Rolling Mills Rolling of steel consists of passing the material, usually termed as rolling stock, between two rolls driven at the same peripheral speed in opposite directions (i.e. one clockwise and the second anti-clockwise) and so spaced that the distance between them is somewhat less than the thickness of the steel section entering them. In these conditions, the rolls grip the material and deliver it reduced in thickness, increased in length and probably somewhat increased in width. This is one of the most widely used processes among all the metal forming processes, because of its higher productivity, close control of the rolled product, and lower operating cost. Rolling is able to produce a product which is having constant cross section throughout its length. Many shapes and sections are possible to roll by the steel rolling process. Rolling of steel is a metal forming process used for plastic deformation of the steel. Plastic deformation is caused by the compressive forces applied through the rotating rolls. High compressive stresses are as a result of the friction between the rolls and the surface of the steel material. The steel material gets squeezed between the pair of rolls mounted in a roll stand, as a result of which the thickness of the steel being rolled gets reduced and the length is increased. Steel sections are generally rolled in several passes, whose number is determined by the ratio of initial input material and final cross section of finished product. The cross section area is reduced in each pass and form and the size of the rolling stock gradually approach to the desired profile. Mostly, rolling is done at high temperature, which is called hot rolling, because of requirement of large deformations....