Silico- Manganese

Silico- Manganese Silico-manganese (Si-Mn) is a metallic ferro alloy which is being used to add both silicon (Si) and manganese (Mn) as ladle addition during steelmaking. Because of its lower carbon (C) content, it is a preferred ladle addition material during making of low carbon steels. Si-Mn is a ferroalloy composed principally of Mn, Si, and Fe (iron), and normally contains much smaller proportions of minor elements, such as C, phosphorus (P), and sulphur (S). The ferroalloy is also sometimes referred to as ferro-silicon-manganese. Both Mn and Si play an important role in the manufacturing of steel as deoxidizing, desulphurizing, and alloying agents. Si is the primary and more powerful deoxidizer. Mn is a milder deoxidizer than Si but enhances the effectiveness of the latter due to the formation of stable manganese silicates and aluminates. It also serves as desulphurizer. Mn is used as an alloying element in almost all types of steel. Of particular interest is its modifying effect on the iron-carbon (Fe-C) system by increasing the hardenability of the steel. There are two families of Mn alloys one is called Si-Mn while the other is known as ferro-manganese (Fe-Mn). Si-Mn adds additional silicon in liquid steel which is a stronger deoxidizer and which also helps to improve some mechanical properties of steel. In each family, content of C can be controlled and lowered when producing low C grades. Around 93 % of all the Mn produced is in the form of Mn ferroalloys consists of the Fe-Mn grades and the Si-Mn grades. The Fe-Mn grades are high carbon (HC), medium carbon (MC), low-carbon (LC) and very low carbon (VLC), whereas the Si-Mn grades include medium carbon (MC) and low carbon (LC). The steel industry is the only consumer of these alloys. However...

Production of Silico-Manganese in a Submerged Arc Furnace Jun09

Production of Silico-Manganese in a Submerged Arc Furnace...

Production of Silico-Manganese in a Submerged Arc Furnace Silico-manganese (Si-Mn) is an alloy used for adding both silicon (Si) and manganese (Mn) to liquid steel during steelmaking at low carbon (C) content. A standard Si-Mn alloy contains 65 % to 70 % Mn, 15 % to 20 % Si and 1.5 % to 2 % C. Si-Mn alloy grades are medium carbon (MC) and low carbon (LC). The steelmaking industry is the only consumer of this alloy. Use of Si-Mn during steelmaking in place of a mix of high carbon ferro-manganese (Fe-Mn) alloy and ferro-silicon (Fe-Si) alloy is driven by economic considerations. Both Mn and Si are crucial constituents in steelmaking. They are used as deoxidizers, desulphurizers and alloying elements. Si is the primary deoxidizer. Mn is a milder deoxidizer than Si but enhances the effectiveness due to the formation of stable manganese silicates and aluminates. It also serves as desulphurizer. Manganese is used as an alloying element in almost all types of steel. Of particular interest is its modifying effect on the iron-carbon (Fe-C) system by increasing the hardenability of the steel. Si-Mn is produced by carbo-thermic reduction of oxidic raw materials in a three-phase, alternating current (AC), submerged arc furnace (SAF) which is also being used for the production of Fe-Mn. Operation of the process for the Si-Mn production is often more difficult than the Fe-Mn production process since higher process temperature is needed. The common sizes of the SAF used for the production of Si-Mn are normally in the range 9 MVA to 40 MVA producing 45 tons to 220 tons of Si-Mn per day. In the carbo-thermic reduction of oxidic raw materials, heat is just as essential for reduction as C is, due to the endothermic reduction reactions and a...

Bulk Ferroalloys

Bulk Ferroalloys  Ferroalloys are a group of materials which are alloys of iron that contain a high percentage of one or more non ferrous metals as alloying elements. These alloys are used for the addition of these other elements into liquid metal. They are normally used as addition agents. More than 85 % of ferroalloys produced are used primarily in the manufacture of steel. Ferroalloys are used as master alloys in steel making, alloying of steels, for the production of stainless steels, and in iron or steel foundries. Ferroalloys are used in steel making for deoxidation as well as for the introduction of alloying elements. They are the most economical way for introducing alloying element into the steel. Ferroalloys impart distinctive qualities to steels and cast irons. The effect on the qualities of steels and cast irons largely depends more or less on the following influences. A change in the chemical composition The removal or the tying up of harmful impurities such as oxygen, nitrogen, sulphur or hydrogen A change in the nature of the solidification, for example, upon inoculation. Ferroalloys are also added in steel production for grain size control as well as for improvement in the mechanical properties of steel. Depending upon the process of steelmaking and the type of steel being made, the requirement of different ferroalloys varies widely. The addition of ferroalloys to steel increases its resistance to corrosion and oxidation, improves its hardenability, tensile strength at high temperature, wear and abrasion resistance with added carbon and increases other desired properties in the steel such as creep strength etc. Ferroalloys are vital inputs for producing all types of steel. They are used as raw material in the production of alloys steel and stainless steel. Ferroalloys are usually classified into two...