Coldry technology for low rank coal drying Aug19

Coldry technology for low rank coal drying...

Coldry technology for low rank coal drying Coldry technology is being developed by Environmental Clean Technologies (ECT) Limited, Australia. The technology consists of expelling of water from a wide range of low rank coals (lignite coals and sub-bituminous coals) containing up to 70 % moisture into high calorific value (CV) black coal equivalent (BCE) pellets with a moisture content of around 10 %. The BCE means that the net energy value of the Coldry pellets is similar in range to that of many black coals. Coldry technology is a patented process which changes the naturally porous form of low rank coals to produce a dry and dense pellets by a process which is called as ‘brown coal densification’(BCD). The technology is based on research initially conducted by CRA and University of Melbourne in the early 1980s. The technology has been demonstrated at pilot plant scale at Bacchus Marsh Coldry plant. This plant was commissioned in 2004, enhanced with a water recovery system in 2007, and upgraded in 2011 so that it can produce up to 20,000 tons per annum of Coldry BCE pellets. The process has been tested and proven successful on a wide range of low rank coals. Principle of the process The Coldry process combines two unique aspects namely (i) brown coal densification, and (ii) waste heat utilization. The process stimulates a natural chemical reaction within the coal. This reaction polymerizes active sites in the coal compounds and expels chemically bound water. The polymerization of the active sites collapses the coal pore structure and expels the physically trapped water. The ejected water migrates to the surface of the coal pellets. The surface water is evaporated by the utilization of waste heat from an adjacent power plant (PP). BCD is a natural phenomenon whereby the physical structure...

Billet Inspection and Conditioning Facilities Aug20

Billet Inspection and Conditioning Facilities...

 Billet Inspection and Conditioning Facilities A considerable percentage of steel bars and wire rods are used for the safety-related parts of automobiles after undergoing post-processing steps (secondary and ternary processing). Quality requirements for these steel bars and wire rods are becoming increasingly diversified in consideration of the workability at the stage of secondary and ternary processing and the use conditions of the machine parts into which they are made. In addition, the need for quality assurance throughout the entire length of the steel bars and wire rods has also increased, and the steel plants are required to apply very severe quality standards for meeting these requirements. Due to this reason, the importance of the reliability of inspection and conditioning of billets which is the starting material for the production of steel bars and wire rods has increased significantly. Depending on the application, billets require surface inspection and conditioning to minimize the surface imperfections. Standard inspection methods consist of visual inspection of the billet surface under white light conditions or wet magnetic particle inspection under black UV lighting. Normally steel plants shot-blast the surface of the billet to remove the mill scale and to improve the visibility of the surface, depending on the type of surface conditions they are trying to detect. The surface imperfections are normally marked as they are detected, and these locations are conditioned. Methods employed are usually machine- grinding and sometimes scarfing. The traditional inspection techniques (other than visual method), which have been aligned to the rolled billets, are all conditioned to the detection of defects which have a significant length component, i.e. seams, rolling laps, tonguing, etc. Continuously cast billets contain, on the other hand, a completely different type of defects such as pinholes, corner tearing, reciprocation marks, entrapped scum,...