Matmor Process for Iron making Aug27

Matmor Process for Iron making...

Matmor Process for Iron making Matmor process is an iron making process which is presently being developed by Environmental Clean Technologies Ltd (ECT). Matmor process technology is a patented technology. The technology is based on lignite coal and is capable of replacing high-grade lump iron ore with lower-cost alternative raw materials because of its unique chemistry and furnace design. Normally lignite coal (also known as brown coal) is not used for metallurgical applications because of its high volatile matter and moisture content. Environmental Clean Technologies Ltd is the owner of the Matmor process technology, including plant, equipment and intellectual property (IP). The Matmor process has placed itself to revolutionize primary iron making process with a design consisting of a simple, low cost, low emission, and patented Matmor retort using cheaper, alternative raw materials. This technology comprises two exclusive features namely (i) it uses lignite coal as a reductant and heat source which is not claimed as of now by any other technology, and (ii) it includes in its plant design, a vertical shaft furnace which works with the natural chemistry of the lignite coal. The development of the Matmor process is based upon the removal of moisture by Coldry technology another patented technology of the Environmental Clean Technologies Ltd and the harnessing of the natural chemistry pf the lignite coal through a process and a vertical retort furnace whose design and process chemistry is different to those of a blast furnace. The process chemistry of the Matmor process utilizes hydrogen as a reducing gas, enabling lower operating temperatures and shorter process times than countered in the iron making by blast furnace. Though the Matmor process technology is individually attractive, its combination with the Coldry technology has higher attractiveness since both the technologies when together are...

Coldry technology for low rank coal drying Aug19

Coldry technology for low rank coal drying...

Coldry technology for low rank coal drying Coldry technology is being developed by Environmental Clean Technologies (ECT) Limited, Australia. The technology consists of expelling of water from a wide range of low rank coals (lignite coals and sub-bituminous coals) containing up to 70 % moisture into high calorific value (CV) black coal equivalent (BCE) pellets with a moisture content of around 10 %. The BCE means that the net energy value of the Coldry pellets is similar in range to that of many black coals. Coldry technology is a patented process which changes the naturally porous form of low rank coals to produce a dry and dense pellets by a process which is called as ‘brown coal densification’(BCD). The technology is based on research initially conducted by CRA and University of Melbourne in the early 1980s. The technology has been demonstrated at pilot plant scale at Bacchus Marsh Coldry plant. This plant was commissioned in 2004, enhanced with a water recovery system in 2007, and upgraded in 2011 so that it can produce up to 20,000 tons per annum of Coldry BCE pellets. The process has been tested and proven successful on a wide range of low rank coals. Principle of the process The Coldry process combines two unique aspects namely (i) brown coal densification, and (ii) waste heat utilization. The process stimulates a natural chemical reaction within the coal. This reaction polymerizes active sites in the coal compounds and expels chemically bound water. The polymerization of the active sites collapses the coal pore structure and expels the physically trapped water. The ejected water migrates to the surface of the coal pellets. The surface water is evaporated by the utilization of waste heat from an adjacent power plant (PP). BCD is a natural phenomenon whereby the physical structure...

Drying Technologies of Lignite Coals Jul20

Drying Technologies of Lignite Coals...

Drying Technologies of Lignite Coals Coals are generally ranked as anthracite, bituminous, sub-bituminous, and lignite, with anthracite being the oldest and lignite the youngest in the age. As coal ages, its moisture content decreases and heating value increases. The lignite coal is often being referred to as brown coal. It is considered to have the lowest rank, lowest carbon (C) content and highest moisture content. Moisture content in lignite coals can be even 60 % or more. Lignite coals are usually shallow buried facilitating its easy open mining. These coals besides high moisture content also have high volatile content and low calorific value (CV) with easy spontaneous ignition. High moisture content is the main restraint for the application of lignite coals. Moisture content of coal causes many difficulties during processing, storage, transport, grinding, and combustion. The high moisture content considerably reduces the CV and combustion efficiency of the coal. It also results into higher heat loss in the exhaust gas. In the combustion of lignite coals, the important part of the energy is consumed to evaporate the moisture inside the coal. The combustion of the high moisture content coal creates several problems such as the additional energy consumption for the moisture evaporation, the insufficient combustion and the additional exhaust discharge etc. Moisture content of the lignite coals can be classified into the following three types. Surface moisture – It is also known as external moisture. The moisture adheres to the surface of coal particulates or in the bigger capillary cavities. It is the moisture, which can be removed by the coal drying in air at ambient temperature (around 25 deg C). It depends on water conditions in deposit. Inherent moisture – It is a naturally combined part of the coal deposit. It is also...