Coking Pressure Phenomena and its Influencing Factors Dec17

Coking Pressure Phenomena and its Influencing Factors...

Coking Pressure Phenomena and its Influencing Factors Coking pressure is a phenomenon which has become important because of the use of the double-heated wall, vertical, slot-type coke ovens. In the round beehive ovens as well in the heat recovery coke ovens, which are also being used for coke production, the coal can freely expand upwards and thus the swelling of the charge is accommodated by this free expansion. On the other hand, in the slot-type coke ovens, the expansion of the coal horizontally to the heated wall is restricted. There are several cases of premature failure of oven walls during the coal carbonization process. The erection of the new, larger and taller coke ovens has been accompanied by undesirable occurrences of distorted walls due to the coking pressure resulting in several studies regarding the expansion behaviour of coal during carbonization. The efforts have been focused on developing a reliable test so that coal blends can be tested for safety prior to their use in the coke ovens. Development of coking pressure During carbonization process, coal passes through the plastic stage and volatile matter (VM) evolves during and, to a lesser extent, after that stage. It is normally accepted that coking pressure arises in the plastic stage. In a coke oven chamber, two vertical plastic layers parallel to the heating walls are formed from the beginning of carbonization. As the carbonization proceeds these layers move towards the centre of the oven. At the same time, similar horizontal layers are formed at the top and bottom of the charge. These are joined with the two vertical layers and the whole forms a continuous region that surrounds the uncarbonized coal and it is usually referred to as the ‘plastic envelope’. The permeability of the plastic layers is...

Coal Carbonization for Coke Production Dec08

Coal Carbonization for Coke Production...

Coal Carbonization for Coke Production Coal carbonization is the process by which coal is heated and volatile products (liquid and gaseous) are driven off, leaving a solid residue called coke. Carbonization of coal involves heating coal to high temperatures either in the absence of oxygen (O2) or in control quantity of O2. A gaseous by-product referred to as coke oven gas (COG) along with ammonia (NH3), water, and sulphur compounds are also thermally removed from the coal. The coke which remains after this distillation largely consists of carbon (C), in various crystallographic forms, but also contains the thermally modified remains of various minerals which have been in the original coal. These mineral remains, usually referred to as coke ash, do not burn and are left as a residue after the coke is burned. Until recently, the carbonization of coal was considered as ‘destructive distillation’, but with the increased importance of the products of carbonization, this phrase is falling out of use. Now, the coal carbonization is considered to be a physico-chemical process which depends on the coking rate, operating parameters, coal blend properties and the transport of thermal energy. The heating rate of coal influences the strength and the fissuring properties of coke. In order to arrive at a homogeneous quality, the heating of the coal cake in a coke oven is therefore to be uniform over the total length and height of the oven. In addition to this, the plastic layer migration rate influences the level of thermal stress in the re-solidified mass and therefore, the level of fissuring. The coal carbonization process started at the beginning of the 18th century by carbonizing good quality of coking coal in heaps on the ground, which subsequently led to the development of beehive ovens of...