Hydrogen gas and its use in Iron and Steel industry...

Hydrogen gas and its use in Iron and Steel industry Hydrogen is a chemical element, ranking first in the periodic table with element symbol of ‘H’. The (atomic number of hydrogen element is 1 and atomic weight is 1.008. It is the smallest atom in the universe and the simplest element in nature. Its molecule consists of two hydrogen atoms. It is the lightest gas, being about 1/14 times as dense as air. It has three isotopes named (i) protium, (ii) deuterium, and (iii) tritium. Pure hydrogen is odourless, colourless and tasteless. Hydrogen has lowest atomic weight of any substance and therefore has very low density both as a gas and a liquid. The vapour density of hydrogen at 20 deg C and 1 atmosphere pressure is 0.08376 kg/cum. The specific gravity of gaseous hydrogen is 0.0696 and hence, it has around 7 % the density of air. The density of liquid hydrogen at normal boiling point and 1 atmosphere pressure is 70.8 kg/cum. The specific gravity of liquid hydrogen is 0.0708 and is thus, it has around 7 % the density of water. Hydrogen is a liquid below its boiling point of -253 deg C and a solid below its melting point of – 259 deg C at atmospheric pressure. It is non-toxic but can act as a simple asphyxiant by displacing the oxygen in the air. When hydrogen is stored as a high-pressure gas at 250 kg/cum and atmospheric temperature, its expansion ratio to atmospheric pressure is 1:240. The molecules of hydrogen gas are smaller than all other gases, and it can diffuse through many materials considered airtight or impermeable to other gases. This property makes hydrogen more difficult to contain than other gases. Leaks of liquid hydrogen evaporate very quickly since the...

Circored and Circofer processes of ironmaking Feb24

Circored and Circofer processes of ironmaking...

Circored and Circofer processes of ironmaking Circored and Circofer processes of ironmaking are fluidized bed based iron ore fines reduction processes. These processes completely avoid agglomeration process and make direct use of iron ore fines. Since the processes use non coking coal, necessity of coke oven battery is not there. Fluidized bed technology is ideally suited to energy-intensive processes like direct reduction because it enables high heat and mass transfer rates. Both the Circored and the Circofer processes have been developed by Lurgi Metallurgie GmbH, Germany (now Outotec Oyj, Finland) for the production of direct reduced iron (DRI) from iron ore fines. For both processes, capacities above 1 million tons per annum are possible in a single production unit, resulting in improved economies of scale. Circored process is hydrogen (H2) based process while the Circofer process is coal based. Circored has a two-stage configuration in order to achieve a high metallization of 90 % to 95 %, whereas Circofer has a single-stage configuration which can achieve pre-reduction up to a metallization of around 70 %. Circofer coal-based process produces pre-reduced feed material for smelting reduction reactors, such as AusIron, or electric smelting furnaces – the final product being hot metal or pig iron. Circored process Circored process uses fluidized beds on a scale adopted by Outotec for other applications. Development of the process was initiated in the late 1970s with the pilot plant tests conducted at the ELRED plant of ASEA in Sweden. Tests were also carried out in the 3 tons per hour CFB reactor demonstration unit at Thyssen Stahl in Duisburg, Germany. These tests had focused on the treatment of steel plant wastes. The first commercial Circored unit was built in 1998 by Cliffs and Associates Ltd. at Point Lisas Industrial Complex...