Carbon Steels and the Iron-Carbon Phase Diagram...

Carbon Steels and the Iron-Carbon Phase Diagram Steels are alloys having elements of iron (Fe) and carbon (C). C gets dissolved in Fe during the production of steels. Pure Fe melts at a temperature of 1540 deg C, and at this temperature, C readily dissolves into the liquid iron, generating a liquid solution. When this liquid solution solidifies, it generates a solid solution, in which the C atoms are dissolved into the solid iron. The individual C atoms lie in the holes between the Fe atoms of the crystalline grains of austenite (at high temperatures) or ferrite (at low temperatures). Austenite has a face centred cubic (fcc) structure while the ferrite has a body centred cubic (bcc) structure (Fig 1). If the amount of C dissolved in the liquid iron is kept below 2.1 %, the product is steel, but if it is above this value, then the product is cast iron. Although liquid iron can dissolve C at levels well above 2.1 % C, solid iron cannot. This leads to a different solid structure for cast irons (iron with total C greater 2.1 %). In addition to C, all the types of steels contain the element manganese (Mn) and low levels of the impurity atoms of phosphorus (P) and sulphur (S). Hence, steels can be considered as alloys of three or more elements. These elements are Fe, C, other element/elements additions, and impurities. It is normal to classify steel compositions into two categories namely (i) plain C steels, and (ii) alloy steels. In plain C steels, other elements consist only of Mn, P, and S, whereas in alloy steels, one or more additional alloying elements are added. Solid solutions are similar to the liquid solution; that is, after the solid substance is dissolved,...

Cast irons and their Classification...

Cast irons and their Classification  The term ‘cast iron’ represents a large family of ferrous alloys. Cast irons are multi-component ferrous alloys, which solidify with a eutectic. The major elements of cast irons are iron, carbon (2 % or more), silicon (1 % to 3 %), minor elements (less than 0.1 %), and often alloying elements (less than 0.1%). Cast iron has higher carbon and silicon contents than steel. The structure of cast iron displays a richer carbon phase than that of steel because of its higher carbon content. Cast iron can solidify according to the thermodynamically metastable Fe-Fe3C (iron carbide) system or the stable iron-graphite system depending principally on composition, cooling rate, and melt treatment. Cast iron in its basic form is a brittle material which has a very little impact strength. It has a little or practically no toughness when compared to low carbon steels.  It has a fraction of the tensile strength of low carbon steels.  When a cast iron piece fails it does not deform in a noticeable way and appears to snap apart or break in a manner consistent with a snap.  There is no early warning of a failure. The graphite phase which is pure carbon acts as a natural defect in the material.  The iron is so saturated with carbon that graphite forms (free carbon) and causes the cast iron to be weaker.  Much smaller amounts of carbon is combined with iron (Fe) in the form of iron carbide (Fe3C, cementite) which is hard and brittle. During the solidification process, when the metastable route is followed, the rich carbon phase in the eutectic is the iron carbide and when the stable solidification route is followed, the rich carbon phase is graphite. Referring only to the binary Fe-Fe3C or...

Microstructures of Iron and Steels...

Microstructures of Iron and Steels The microstructures of iron and steels is complicated and diverse which is influenced by composition, homogeneity, heat treatment, processing and section size. Microstructure of castings looks different than those of the wrought products even if the composition is same and even if the same heat treatment is given. Pure iron is polymorphic. Two allotropic phases exist for pure iron in solid state depending on the temperature. One is bcc (body centered cubic) and the other is fcc (face centered cubic). The bcc crystalline form (?-iron) is stable until a temperature of 912 deg C when it is transformed to fcc (?-iron). The ?-iron remains stable until 1394 deg C, and then it reverts to bcc structure (?-iron). ?-iron is stable until the melting point of 1538 deg C. High purity iron is very weak. The ability of iron to accommodate heavy interstitials, namely carbon and nitrogen, is mostly responsible for the strength and the hardening effects. Ferrite ?- iron refers only to the bcc form of pure iron that is stable below 912 deg C. Ferrite is a solid solution of one or more elements in bcc iron. The carbon solubility of ferrite depends on the temperature: the maximum being 0.02 % at 723 deg C. Ferrite may precipitate from austenite in acicular form with certain cooling conditions. Ferrite is a very soft, ductile phase, although it loses its toughness below some critical temperature. ?-ferrite is magnetic below 768 deg C. Austenite ? – iron refers to fcc form of pure iron that is stable between 912 deg C and 1394 deg C. Austenite is a solid solution of one or more elements in fcc iron. Austenite is stable above 723 deg C depending upon C content. It can...

The Iron-Carbon Phase Diagram Mar11

The Iron-Carbon Phase Diagram...

The Iron-Carbon Phase Diagram In their simplest form, steels are alloys of Iron (Fe) and Carbon (C). The study of the constitution and structure of iron and steel start with the iron-carbon phase diagram. It is also the basis understanding of the heat treatment of steels. The Iron Carbon diagram is shown in Fig. 1. Fig 1 Iron Carbon phase diagram The diagram shown in Fig 1 actually shows two diagrams i) the stable iron-graphite diagram (dashed lines) and the metastable Fe-Fe3C diagram. The stable condition usually takes a very long time to develop specially in the low temperature and low carbon range hence the metastable diagram is of more interest. Many of the basic features of this irpn carbon system also influence the behavior of alloy steels. For example, the phases available in the simple binary Fe-C system are also available in the alloy steels, but it is essential to examine the effects of the alloying elements on the formation and properties of these phases. The iron-carbon diagram provides a solid base on which to build the knowledge of both plain carbon and alloy steels. There are some important metallurgical phases and micro constituents in thr iron carbon system. At the low-carbon end is the ferrite (?-iron) and austenite (?-iron). Ferrite can at most dissolve 0.028 wt% C at 727 deg C and austenite (?-iron) can dissolve 2.11 wt% C at 1148 deg C. At the carbon-rich side there is cementite (Fe3C). Between the single-phase fields are found regions with mixtures of two phases, such as ferrite & cementite, austenite & cementite, and ferrite & austenite. At the highest temperatures, the liquid phase field can be found and below this are the two phase fields liquid & austenite, liquid & cementite, and liquid...