Silica Refractories

Silica Refractories Silica refractories were first produced in United Kingdom in 1822 from Ganister (caboniferous sandstone) or from so called Dinas sand. Silica occurs in a variety of crystalline modifications, e.g. quartz, tridymite, and cristobalite and also as an under-cooled melt called quartz glass. The crystalline modifications each have a high and low temperature forms which can transform reversibly. The crystal structure of the individual SiO2 modifications can differ widely, so that distinct density changes occur during transformation. This is of great importance during heating and cooling because of the change in the volume. Quartz requires the smallest volume and the quartz glass the largest. During firing above approximately 900 deg C, quartz transforms into the other modifications and melt completely at 1725 deg C. During slow cooling , reversible volume decreases take placeĀ  which are a result of the spontaneous transformation of the crystal structure from the high to the low temperature modification (Fig 1). The reversible and irreversible volume effects can cause considerable stress within the refractory brick structure. Fig 1 Calculated volume and density changes Production of silica refractories The silica refractories are manufactured as multiple asymmetric shapes, which are normally keyed or interlocked with each other by means of tongues and grooves. It is the objective of the manufacturer of silica refractory bricks to select the raw materials and the firing process in such a manner that the degree of quartz transformation is suitable for the intended application of the brick. The raw material for silica brick is naturally occurring quartzite which must meet certain requirements in order to achieve optimum brick properties. If refractoriness or thermal expansion under load (creep) are the main requirements, a quartzite of high chemical purity must be selected. Raw materials for volume stable products...