Coal for Pulverized Coal Injection in Blast Furnace...

Coal for Pulverized Coal Injection in Blast Furnace Injection of pulverized coal in the blast furnace (BF) was initially driven by high oil prices but now the use of pulverized coal injection (PCI) hasĀ  become a standard practice in the operation of a BF since it satisfy the requirement of reducing raw material costs, pollution and also satisfy the need to extend the life of ageing coke ovens. The injection of the pulverized coal into the BF results into (i) increase in the productivity of the BF, i.e. the amount of hot metal (HM) produced per day by the BF, (ii) reduce the consumption of the more expensive coking coals by replacing coke with cheaper soft coking or thermal coals, (iii) assist in maintaining furnace stability, (iv) improve the consistency of the quality of the HM and reduce its silicon (Si) content, and (v) reduce greenhouse gas emissions. In addition to these advantages, use of the PCI in the BF has proved to be a powerful tool in the hands of the furnace operator to adjust the thermal condition of the furnace much faster than what is possible by adjusting the burden charge from the top. Schematic diagram of a BF tuyere showing a pulverized coal injection lance is at Fig 1. Fig 1 Schematic diagram of a BF tuyere showing a pulverized coal injection lance Several types of coals are being used for PCI in the BF. In principle, all types of coals can be used for injection in BF, but coking coals are not used for injection since they are costly, have lower availability and are needed for the production of coke. Also, if coking coals are used for injections in BF, They lead to tuyere coking. Hence, coals used for injection...

Production of Ferro-Silicon Jun27

Production of Ferro-Silicon...

Production of Ferro-Silicon Ferro-silicon (Fe-Si) is a ferro-alloy having iron (Fe) and silicon (Si) as its main elements. The ferro-alloy normally contains Si in the range of 15 % to 90 %. The usual Si contents in the Fe-Si available in the market are 15 %, 45 %, 65 %, 75 %, and 90 %. The remainder is Fe, with around 2 % of other elements like aluminum (Al) and calcium (Ca). Fe-Si is produced industrially by carbo-thermic reduction of silicon dioxide (SiO2) with carbon (C) in the presence of iron ore, scrap iron, mill scale, or other source of iron. The smelting of Fe-Si is a continuous process carried out in the electric submerged arc furnace (SAF) with the self-baking electrodes. Fe-Si (typical qualities 65%, 75% and 90% silicon) is mainly used during steelmaking and in foundries for the production of C steels, stainless steels as a deoxidizing agent and for the alloying of steel and cast iron. It is also used for the production of silicon steel also called electrical steel. During the production of cast iron, Fe-Si is also used for inoculation of the iron to accelerate graphitization. In arc welding Fe-Si can be found in some electrode coatings. The ideal reduction reaction during the production of Fe-Si silicon is SiO2+2C=Si+2CO. However the real reaction is quite complex due to the different temperature zones inside the SAF. The gas in the hottest zone has a high content of silicon mono oxide (SiO) which is required to be recovered in the outer charge layers if the recovery of Si is to be high. The recovery reactions occur in the outer charge layers where they heat the charge to a very high temperature. The outlet gas form the furnace contains SiO2 which can...

Development of Smelting Reduction Processes for Ironmaking Mar08

Development of Smelting Reduction Processes for Ironmaking...

Development of Smelting Reduction Processes for Ironmaking Smelting reduction (SR) processes are the most recent development in the production technology of hot metal (liquid iron). These processes combine the gasification of non-coking coal with the melt reduction of iron ore. Energy intensity of SR processes is lower than that of blast furnace (BF), since the production of coke is not needed and the need for preparation of iron ore is also reduced. SR ironmaking process was conceived in the late 1930s. The history of the development of SR processes goes back to the 1950s. The laboratory scale fundamental studies on the SR of iron ore were started first by Dancy in 1951. However, serious efforts started from 1980 onwards. There have been two separate lines of development of primary ironmaking technology during the second half of twentieth century. The first line of development was centred on the BF which remained the principal process unit for the hot metal production. In general, this line of the development did not encompass any radical process changes in the furnace itself. It proceeded through a gradual evolution which involved (i) increase in the furnace size, (ii) improvement in the burden preparation, (iii) increase in the top pressure, (iv) increase of hot blast temperature, (v) bell-less charging and improvements in burden distribution, (vi) improvements in refractories and cooling systems, (vii) injection of auxiliary fuels (fuel gas, liquid fuel, or pulverized coal) and enrichment of hot air blast with oxygen (O2), and (viii) application of automation as well as improvements in instrumentation and control technology. The continued success of the ironmaking in BF reflects the very high levels of thermal and chemical efficiencies which can be achieved during the production of hot metal and the consequent cost advantages. In fact,...

Probes, Instruments and measurements for Monitoring of Blast Furnace Jun28

Probes, Instruments and measurements for Monitoring of Blast Furnace...

Probes, Instruments and measurements for Monitoring of Blast Furnace A blast furnace (BF) works with the principle of countercurrent gas to solid heat exchange from tuyere raceway to the stock line and of a countercurrent oxygen (O2) exchange from fusion zone to the stock line. Solid burden materials consisting of ferrous materials (iron ore, sinter, and pellets), coke, and fluxing materials are charged into the top of the furnace, while air normally enriched with O2, and sometimes with auxiliary fuels is fed through the tuyeres near the bottom of the furnace. The usual retention time of the ferrous burden materials in the furnace may be as long as 8 hours, while that of the gas is a few seconds. However, the residence time of the coke in the hearth is much longer usually ranging from 1 week to 4 weeks. The liquid hot metal (HM) and liquid slag are tapped at regular intervals through a number of tapholes situated at the bottom of the furnace. The slag is separated from the hot metal which is handled through HM ladles. A blast furnace need to be operated with high productivity and low fuel rate in a flexible, stable and high efficiency manner and must have a long campaign life. The blast furnace is often referred to as black box because of the terms such as the furnace condition and furnace heat level which is currently in dominant use as well as since the blast furnace process has many unknown areas. The reason seems to be due to the difficulty in measurement, because, in a blast furnace, three phases of gas, solid, and liquid coexist, the reaction proceeds non-uniformly in radial direction, the process is accompanied by a time dependent variation, and the parameters to be...

Blast Furnace Tuyeres and Tuyere Stocks May29

Blast Furnace Tuyeres and Tuyere Stocks...

Blast Furnace Tuyeres and Tuyere Stocks The blast furnace (BF) has the objective of extracting the hot metal (liquid iron) from iron ore lump, sinter and/or pellet, coke and injected fuel. This objective is achieved by passing a hot enriched air flow (hot blast air) through the ore and coke burden which goes down in the internal column of the BF. The hot blast air and auxiliary fuel are injected into the blast furnace through tuyeres located around the perimeter of the BF. The upper zone of the hearth wall of the blast furnace contains the openings for the tuyeres which are used to introduce the hot blast air into the furnace. The furnace jacket in the tuyere zone contains steel reinforced openings within which copper (Cu) cooled elements are installed, similar to that shown in Fig 1. The steel reinforcements in the jacket are called tuyere cooler holders. The large Cu cooler which is installed within the machined inner surface of the cooler holder is called the tuyere cooler. The Cu cooler which actually introduces the hot blast air into the furnace is called the tuyere. It is installed within a machined, inner seating surface on the tuyere cooler. The blowpipe is part of the tuyere stock air distribution piping, which delivers the hot blast air from the bustle pipe, and which mates with the tuyere, to direct the hot blast air into the furnace. The tuyere breast walls are usually made of carbon brick and the cooling is generally external with jacketed cooling channels on the outside of the shell. Some furnaces have internal staves in the tuyere breast between the tuyere coolers as a cooling design for the tuyere breast. Fig 1 also shows the arrangement of the tuyere cooler holder,...