Steel Wire Rods

Steel Wire Rods Steel wire rod is a semi-finished product which is rolled from steel billet in a wire rod mill and is used primarily for the manufacture of wire. For a steel plant it is a finished product. The steel for wire rod is produced by all the modern steelmaking processes, including the basic oxygen and electric furnace processes. Steel wire rod is usually cold drawn into wire suitable for further processing such as cold rolling, cold heading, cold upsetting, cold extrusion, cold forging, or hot forging. Although wire rod may be produced in several regular shapes (round, square, hexagonal, and rectangular), most of the wire rods rolled are round in cross section. Round wire rod is usually produced in nominal diameters of 5 mm to 15 mm, advancing in increments of 0.5 mm.  ISO 16124:2004 gives diameters of round steel wire rods ranging from 5 mm to 50 mm, advancing in increments of 0.5 mm up to 20 mm and thereafter in the increments of 1 mm. As the wire rod comes out of the rolling mill, it is formed into coils. The coils are secured either tying with a wire or strapped with a strapping band. In each coil, wire rod is continuous without any break.  Internal diameter of a wire rod coil usually varies in the range of 810 mm to 910 mm depending on the mill equipment. The external diameter of the wire rod coil depends on its weight and usually it is in the range of 1100 mm to 1300 mm. The coil weight can vary from mill to mill and normally it is in the range of 600 kg to 2.5 tons. Coil weights that exceed the capabilities of the rolling mill sometimes can be obtained by welding...

Ferroalloys

Ferroalloys Ferroalloys are alloys of iron with a high percentage of one or more of other elements. Ferroalloys industry is very closely related to iron and steel industry since ferroalloys are used in steel making, alloying of steels and in iron or steel foundries. In the production of steel, ferro alloys are used for deoxidation of steels as well as for introduction of the alloying elements in the steel. Ferroalloys impart distinctive qualities to steel and cast iron.  Depending upon the process of steel making and the product quality envisaged, the requirement of ferroalloys varies widely. Ferroalloys are usually classified into two groups namely (i) Bulk ferroalloys and (ii) Noble or special ferroalloys. More than 85 % of ferroalloys produced are used in the steel industry. Bulk ferroalloys Bulk ferroalloys consist of principal alloys namely ferro manganese (Fe-Mn), silico manganese (Si-Mn), ferro chrome/charge chrome (Fe-Cr) and ferro silicon (Fe-Si). These are shown in Fig 1. Fig 1 Bulk ferroalloys Ferro manganese – Fe – Mn is a ferroalloy with high content of manganese (Mn). It is produced by heating a mixture of the oxides of MnO2 and Fe203 with carbon usually as coal and coke, in either a blast furnace or a submerged arc furnace. The oxides undergo carbo thermal reduction to produce Fe- Mn. It is produced as three types of products namely (i) standard high carbon (C) Fe-Mn, (ii) medium carbon Fe-Mn and (iii) low carbon Fe- Mn. High carbon Fe – Mn has manganese in the range of 72 % to 82 %, C in the range of 6 % to 8 % and silicon (Si) in the range of around 1.5 %. Medium carbon Fe- Mn has manganese in the range of 74 % to 82 %, C in the...

Forging quality steels...

Forging quality steels Forging quality steels are those steels which are subjected to the process of forging during its subsequent processing for the production of end use products. The process of forging consists of converting the steel material into designed shape at a higher strain rate. Forging quality steels have the property of forgeability which is the relative ability of the steel to flow under compressive loading without fracturing. Except for resulphurized and rephosphorized grades, most carbon and low alloyed steels are usually considered to have good forgeability. Difference in forging behaviour among the various grades of steel is small enough and hence selection of steel for a forging is seldom affected by the forging behaviour Forging process The forging process can be of the following three types. Hot forging – In this process the forging operation is usually done at a temperature of around 1200 deg C. Warm forging – This process is carried out below the recrystallization temperature of steel normally at temperatures ranging from 650 deg C to 750 deg C. Cold forging – This process is performed at room temperature and the steel material is not heated. During the process of forging, since high strain rates are employed, the qualities needed in forging steels are critical and demanding. Further forging components demand specialized treatments necessary for imparting special properties based on the end application of the forgings. Also since the end use of the forged steel products is of critical nature, a close control over all the stages of steel manufacturing process is required. Selection of steel for forging Selection of a type of steel for a forged component is an integral part of the forging process and accepted performance of the steel after forging is dependent on this choice....