Endless Rolling of Bars and Rods Sep17

Endless Rolling of Bars and Rods...

Endless Rolling of Bars and Rods Endless rolling technology is the most advanced process method for the rolling of the bars and rods (also known as long products) from the billets. It consists of a welding arrangement designed to endlessly join billets together in order to provide a continuous supply of material to the rolling mill train. It is enabled by welding of the billets which come from a reheating furnace at the upstream side of the stands of rolling mill train. In fact, the joining of the tail end of the billet being rolled and the head end of the billet to be rolled is one of the key aspects of the endless rolling technology. Although endless rolling has been in commercial operation since the late 1990s but it took a long time to reach certain level of technical maturity. The major reasons for this are (i) difficulty in the development of the welding technology of hot billets of a large cross-section area in a short time, (ii) achievement of the high joint quality which is needed to improve yield, (iii) difficulty in the development of the technology for the complete and smooth deburring of the welded joint in a short time to avoid any surface defects as well as to avoid the deformation of the billets, and (iv) to achieve the difference between the quality of the welded joint with the rest of the billet within the acceptable limits as this limits the product range of the rolling mill since the joint during the rolling process is rolled out to long length, and reduces uniformity of chemical composition, and the mechanical stability of the finished rolled product. Endless rolling concept Endless rolling process concept has led to a change in the overall...

Energiron Direct Reduction Technology Sep08

Energiron Direct Reduction Technology...

Energiron Direct Reduction Technology Energiron direct reduction technology is a gas based direct reduction technology. Energiron process converts iron ore pellets or lumps into metallic iron. It uses the HYL direct reduction technology developed jointly by Tenova and Danieli and is a competitive and environmentally clean solution for lowering the liquid steel production cost. It uses a simple plant configuration, has flexibility for using different sources of reducing gases and has a very efficient and flexible use of iron ores. A key factor in many of the process advantages is directly related to its pressurized operation. Energiron is the name of the direct reduced iron (DRI) product produced by the Energiron direct reduction technology. The product is so named since it carries substantial energy with it which is realized during the steel making process. Energiron is a highly metallized product with the carbon (C) content which is controllable in the range of 1.5 % to 5.0 %. The higher C content of Energiron generates chemical energy in the electric arc furnace (EAF) melting process. The uniquely stable characteristic of Energiron DRI makes it a product which can be safely and easily transported without briquetting, following standard IMO (International Maritime Organization) guidelines. The process is flexible to produce three different product forms, depending on the specific requirements of each user. The three forms of Energiron DRI are cold DRI, HBI (hot briquetted iron) or hot DRI (‘Hytemp’ iron with discharge temperature greater than 700 deg C). Cold DRI discharge is normally used in an adjacent steel melt shop close to the direct reduction plant. It can also be shipped and exported. HBI is the DRI which is discharged hot, briquetted, and then cooled. It is a merchant product usually meant for overseas export. Hytemp Energiron...

Matmor Process for Iron making Aug27

Matmor Process for Iron making...

Matmor Process for Iron making Matmor process is an iron making process which is presently being developed by Environmental Clean Technologies Ltd (ECT). Matmor process technology is a patented technology. The technology is based on lignite coal and is capable of replacing high-grade lump iron ore with lower-cost alternative raw materials because of its unique chemistry and furnace design. Normally lignite coal (also known as brown coal) is not used for metallurgical applications because of its high volatile matter and moisture content. Environmental Clean Technologies Ltd is the owner of the Matmor process technology, including plant, equipment and intellectual property (IP). The Matmor process has placed itself to revolutionize primary iron making process with a design consisting of a simple, low cost, low emission, and patented Matmor retort using cheaper, alternative raw materials. This technology comprises two exclusive features namely (i) it uses lignite coal as a reductant and heat source which is not claimed as of now by any other technology, and (ii) it includes in its plant design, a vertical shaft furnace which works with the natural chemistry of the lignite coal. The development of the Matmor process is based upon the removal of moisture by Coldry technology another patented technology of the Environmental Clean Technologies Ltd and the harnessing of the natural chemistry pf the lignite coal through a process and a vertical retort furnace whose design and process chemistry is different to those of a blast furnace. The process chemistry of the Matmor process utilizes hydrogen as a reducing gas, enabling lower operating temperatures and shorter process times than countered in the iron making by blast furnace. Though the Matmor process technology is individually attractive, its combination with the Coldry technology has higher attractiveness since both the technologies when together are...

Coldry technology for low rank coal drying Aug19

Coldry technology for low rank coal drying...

Coldry technology for low rank coal drying Coldry technology is being developed by Environmental Clean Technologies (ECT) Limited, Australia. The technology consists of expelling of water from a wide range of low rank coals (lignite coals and sub-bituminous coals) containing up to 70 % moisture into high calorific value (CV) black coal equivalent (BCE) pellets with a moisture content of around 10 %. The BCE means that the net energy value of the Coldry pellets is similar in range to that of many black coals. Coldry technology is a patented process which changes the naturally porous form of low rank coals to produce a dry and dense pellets by a process which is called as ‘brown coal densification’(BCD). The technology is based on research initially conducted by CRA and University of Melbourne in the early 1980s. The technology has been demonstrated at pilot plant scale at Bacchus Marsh Coldry plant. This plant was commissioned in 2004, enhanced with a water recovery system in 2007, and upgraded in 2011 so that it can produce up to 20,000 tons per annum of Coldry BCE pellets. The process has been tested and proven successful on a wide range of low rank coals. Principle of the process The Coldry process combines two unique aspects namely (i) brown coal densification, and (ii) waste heat utilization. The process stimulates a natural chemical reaction within the coal. This reaction polymerizes active sites in the coal compounds and expels chemically bound water. The polymerization of the active sites collapses the coal pore structure and expels the physically trapped water. The ejected water migrates to the surface of the coal pellets. The surface water is evaporated by the utilization of waste heat from an adjacent power plant (PP). BCD is a natural phenomenon whereby the physical structure...

Pristine-M process technology for drying of low rank coals Aug09

Pristine-M process technology for drying of low rank coals...

Pristine-M process technology for drying of low rank coals Pristine-M process technology for the drying of the low rank coals is being developed by Clean Coal Technologies, Inc. (CCTI). It is a patented technology for converting raw low rank coal into a cleaner burning more efficient fuel. It addresses the need for a low moisture coal which is economical to transport, stable in transportation and does not reabsorb moisture. Pristine-M is a low-cost coal de-watering technology which has succeeded in drying coal and stabilizing it cheaply using volatile matter (VM) released by the feed raw coal. Pristine-M process reduces the moisture content of low-rank coals, while also stabilizing and sealing the treated coals to prevent moisture re-absorptions and spontaneous combustion. The process also increases the calorific value (CV) of the low-rank coals to values which are comparable with the bituminous coals. Pristine-M is the third stage of the development of the process. The other two stages are ‘Pristine-SA’ and ‘Pristine’. Pristine-SA is a development stage technology designed to eliminate 100 % of the VM in the feed raw coal. For achieving stable combustion, Pristine-SA treated coal is to be co-fired with treated biomass or natural gas. The process results into a clean fuel, eliminating the need for emissions scrubbers and the corollary production of toxic flue gas desulphurization (FGD) sludge. Pristine-SA gives a versatile coal product which can be used to produce numerous non-fuel products. CCTI’s legacy technology, ‘Pristine’, is designed to remove moisture and VM, as per the requirements. The factor determining VM reduction is boiler design and the need for a certain amount of VM to remain in the coal to ensure proper burn. The end product is a cleaner burning, dry coal. CCTI’s Pristine-M technology is a patented, low-cost coal dehydration...

WTA technology for drying of lignite coal Jul27

WTA technology for drying of lignite coal...

WTA technology for drying of lignite coal WTA (Wirbelschicht Trocknung Anlage) technology for drying of lignite coal has been developed by German company RWE Power AG. WTA is the German abbreviation which stands for fluidized-bed drying with internal waste heat utilization. RWE Power AG holds a good number of patents on this technology. The first steam-fluidized bed dryer was developed by RWE as the WTA-1 demonstration plant at Frechen near Cologne, Germany,  with a throughput capacity of 53 tons per hour of raw lignite coal having a grain size of 0 mm to 6 mm and an evaporative capacity of 25 tons per hour. During the 20,000 hours of test operation from 1993 to 1999, the WTA-1 demonstration plant along with the vapour compression system for drier heating (employed for the first time worldwide in lignite coal applications) has proved to work extremely well and reliably. Further theoretical work and an evaluation of the test operation of the WTA-1 plant revealed further potential for the technical and economic process optimization. Several alternatives of development were considered and it was revealed that a reduction of the grain size held most potential for further improvement. In 1999, RWE built a test plant called WTA-2 for the fine grained WTA process directly next to the WTA-1 plant in Frechen. This new plant had a design capacity which was increased in several optimization steps from originally 16.4 tons per hour of raw lignite coal throughput and 8 tons per hour evaporation capacity to a raw coal throughput of 28.7 tons per hour and a water evaporation capacity of 13.1 tons per hour during the total of 8,200 hours of operation of the plant by 2011. Based on the extensive experience from the operation of the WTA-2 plant with...