Production of Ferro- Manganese Jun19

Production of Ferro- Manganese...

Production of Ferro- Manganese Ferro-manganese (Fe-Mn) is an important additive used as a deoxidizer in the production of steel. It is a master alloy of iron (Fe) and manganese (Mn) with a minimum Mn content of 65 %, and maximum Mn content of 95 %. It is produced by heating a mixture of the oxides of Mn (MnO2) and iron (Fe2O3) with carbon (C) normally as coke or coal. Fe-Mn in a blast furnace (BF) with considerably higher Mn content than was possible earlier was first produced in 1872 by Lambert Von Pantz. The Fe-Mn produced had 37 % Mn instead of 12 % being obtained earlier. Metallurgical grade Mn ores having Mn content higher than 40 % are usually processed into suitable metallic ferro- alloy forms by pyro-metallurgical processes, which are very similar to the iron pyro-metallurgical processes. In its production process, a mixture of Mn ore, reductant (a form of C) and flux (CaO) are smelted at a temperature which is higher than 1200 deg C to enable reduction reactions and alloy formation. Standard grades of Fe-Mn can be produced either in a BF or in an electric submerged arc furnace (SAF). The electric SAF process, however, is far more flexible than the BF process, in that slags can be further processed to Si-Mn and refined Fe-Mn. The choice of process is also dependent on the relative price of electric power and coke. In a three-phase SAF, the electrodes are buried in the charge material. The raw materials are heated and the Mn oxides pre-reduced by hot carbon mono oxide (CO) gas form the reaction zones deeper in the furnace. The exothermic reactions contribute favourably to the heat required. Efficient production of HC Fe-Mn depends on the degree of pre-reduction which occurs...

Production of Silico-Manganese in a Submerged Arc Furnace Jun09

Production of Silico-Manganese in a Submerged Arc Furnace...

Production of Silico-Manganese in a Submerged Arc Furnace Silico-manganese (Si-Mn) is an alloy used for adding both silicon (Si) and manganese (Mn) to liquid steel during steelmaking at low carbon (C) content. A standard Si-Mn alloy contains 65 % to 70 % Mn, 15 % to 20 % Si and 1.5 % to 2 % C. Si-Mn alloy grades are medium carbon (MC) and low carbon (LC). The steelmaking industry is the only consumer of this alloy. Use of Si-Mn during steelmaking in place of a mix of high carbon ferro-manganese (Fe-Mn) alloy and ferro-silicon (Fe-Si) alloy is driven by economic considerations. Both Mn and Si are crucial constituents in steelmaking. They are used as deoxidizers, desulphurizers and alloying elements. Si is the primary deoxidizer. Mn is a milder deoxidizer than Si but enhances the effectiveness due to the formation of stable manganese silicates and aluminates. It also serves as desulphurizer. Manganese is used as an alloying element in almost all types of steel. Of particular interest is its modifying effect on the iron-carbon (Fe-C) system by increasing the hardenability of the steel. Si-Mn is produced by carbo-thermic reduction of oxidic raw materials in a three-phase, alternating current (AC), submerged arc furnace (SAF) which is also being used for the production of Fe-Mn. Operation of the process for the Si-Mn production is often more difficult than the Fe-Mn production process since higher process temperature is needed. The common sizes of the SAF used for the production of Si-Mn are normally in the range 9 MVA to 40 MVA producing 45 tons to 220 tons of Si-Mn per day. In the carbo-thermic reduction of oxidic raw materials, heat is just as essential for reduction as C is, due to the endothermic reduction reactions and a...

Steelmaking in Induction Furnace May24

Steelmaking in Induction Furnace...

Steelmaking in Induction Furnace Coreless induction furnaces have been used in the ferrous industry for over 50 years and are now one of the most popular means of melting and holding ferrous materials. Induction melting had dramatic growth during the 1960s based on line frequency technology, and later with the large-scale introduction of medium frequency power supply during the 1980s. Making of mild steel in the induction furnace was first experimented during early 1980s and it gained popularity when the production of sponge iron utilizing coal based process of rotary kilns became popular. Induction furnace is a type of electric melting furnace which uses electric current to melt metal. The principle of induction melting is that a high voltage electrical source from a primary coil induces a low voltage, high current in the metal (secondary coil). Induction heating is simply a method of transfer of the heat energy. Two laws which govern induction heating are (i) electromagnetic induction, and (ii) the joule effect. Coreless induction furnace comprises a relatively thin refractory crucible encircled by a water cooled copper coil excited from a single AC supply. When the coil is energized, the fluctuating axial magnetic field causes a current to flow in electrically conducting pieces of charge material within the crucible. The power induced in the charge depends on the physical properties of the material, the flux linking it and its geometric shape. Dependent on the resistivity of the material being melted, the coreless induction furnace converts electrical energy to heat the charge at an efficiency of between 50 % and 85 %, although furnace efficiency is further reduced by thermal losses from radiation from the melt surface and conduction through the furnace lining. Medium frequency induction furnaces which are commonly used for steelmaking use...

Redsmelt process for ironmaking Apr19

Redsmelt process for ironmaking...

Redsmelt process for ironmaking Redsmelt is a new ironmaking process based a two reduction steps. These are (i) pre-reduction of iron bearing materials in a rotary hearth furnace (RHF), and (ii) smelting of the hot pre-reduced iron (DRI, direct reduced iron). Originally a submerged arc furnace (SAF) has been used for the second step. SAF has now been replaced by a coal and oxygen blown converter (oxy-coal reactor) known as ‘New Smelting Technology’ (NST). The RHF reduces green pellets made out of iron ore, reductant fines and binders to produce hot, metallized DRI which is charged to the NST for its smelting to hot metal. Redsmelt process has been conceived to be consisting of a cost-effective and environmental-friendly technology. The important highlights of the process are as follows. The process does not need any prepared charge materials The process does not need electrical energy, since the DRI smelting is carried out using chemical energy The smelter is having high productivity resulting into limited investment cost The process can use practically all the residues generated during various processes of the steel plant (including sludges and oily mill scales), thus it solves the increasing issue of steel wastes treatment The off-gas coming from the smelting reactor is used as a fuel in the RHF, with optimization of the overall energy utilization. This results into effective reduction in energy consumption A Redsmelt demonstration plant with two step smelting reduction process was built and tested in Piombino works (Italy) for the production of hot metal. The demonstration plant was commissioned in the year 2003. The two production steps in the demonstration plant have been based upon pre-reduction of iron-bearing materials in a RHF and smelting of the hot DRI in an oxy-coal converter. The plant has been designed...

Process for Manufacturing of Iron Carbide Mar11

Process for Manufacturing of Iron Carbide...

Process for Manufacturing of Iron Carbide Iron carbide (Fe3C) is a high melting point, non-pyrophoric, strongly magnetic synthetic compound obtained in granular form. It consists of around 90 % total iron (Fe) and around 7 % total carbon (C). The primary use of the product is as a metallic charge during steelmaking for substitution of hot metal (HM), direct reduced iron (DRI), or steel scrap. The iron carbide process involves conversion of preheated fine iron ore particles to iron carbide. It reduces iron ore to iron carbide in a fluidized bed reactor, by contacting the iron ore with process gas consisting primarily of methane (CH4) and hydrogen (H2). The process for the manufacturing iron carbide was originally designed and developed at Hazen Research Inc. in Golden, Colorado, USA by the technical vice president Dr. Frank M. Stephens. The process involves reduction of preheated fine iron ore particles (0.1 mm to 1.0 mm) in a closed circuit fluidized bed reactor by preheated process gas containing CH4, H2, CO (carbon mono oxide), CO2 (carbon di oxide) and water vapour(H2O) at 600 deg C. A 50 mm diameter batch reactor was used for the laboratory tests. This was followed by continuous tests on a 600 mm diameter reactor. Iron ore samples from several countries were tested at Hazen. The product was successfully converted to steel by MEFOS in Sweden in a basic oxygen furnace (BOF) in 1979. After the initial laboratory tests at Hazen Research, Inc., Dr. Stephens applied for a patent and was issued on October 11, 1977 ‘US Patent No. 4,053.301’ by the Patent office of the United States. In 1985 Dr. Stephens retired and acquired the rights to the patent on the iron carbide. He formed a company by name ‘Iron Carbide Development Corporation’...

Circored and Circofer processes of ironmaking Feb24

Circored and Circofer processes of ironmaking...

Circored and Circofer processes of ironmaking Circored and Circofer processes of ironmaking are fluidized bed based iron ore fines reduction processes. These processes completely avoid agglomeration process and make direct use of iron ore fines. Since the processes use non coking coal, necessity of coke oven battery is not there. Fluidized bed technology is ideally suited to energy-intensive processes like direct reduction because it enables high heat and mass transfer rates. Both the Circored and the Circofer processes have been developed by Lurgi Metallurgie GmbH, Germany (now Outotec Oyj, Finland) for the production of direct reduced iron (DRI) from iron ore fines. For both processes, capacities above 1 million tons per annum are possible in a single production unit, resulting in improved economies of scale. Circored process is hydrogen (H2) based process while the Circofer process is coal based. Circored has a two-stage configuration in order to achieve a high metallization of 90 % to 95 %, whereas Circofer has a single-stage configuration which can achieve pre-reduction up to a metallization of around 70 %. Circofer coal-based process produces pre-reduced feed material for smelting reduction reactors, such as AusIron, or electric smelting furnaces – the final product being hot metal or pig iron. Circored process Circored process uses fluidized beds on a scale adopted by Outotec for other applications. Development of the process was initiated in the late 1970s with the pilot plant tests conducted at the ELRED plant of ASEA in Sweden. Tests were also carried out in the 3 tons per hour CFB reactor demonstration unit at Thyssen Stahl in Duisburg, Germany. These tests had focused on the treatment of steel plant wastes. The first commercial Circored unit was built in 1998 by Cliffs and Associates Ltd. at Point Lisas Industrial Complex...