Waste Heat Recovery Devices...

Waste Heat Recovery Devices  Industrial furnaces are used for carrying out certain processes which requires heat. Heat in the furnace is provided by (i) fuel energy, (ii) chemical energy, (iii) electrical energy or (iv) a combination of these energies. Gases which are generated during the process leaves the furnace at a temperature which is the inside temperature of the furnace and hence have a high sensible heat content. Sometimes the exhaust gases carries some chemical energy, which raises the temperature of exhaust gases further due to post combustion because of this chemical energy. The heat energy contained in the exhaust gases is the waste energy since it gets dumped in the environment. However, it is possible to recover some part of this energy if investments are made in waste heat recovery devices (WHRDs). Methods for waste heat recovery include (i) transferring heat between exhaust gases and combustion air for its preheating, (ii) transferring heat to the load entering furnaces, (iii) generation of steam and electrical power, or (iv) using waste heat with a heat pump for heating or cooling facilities. WHRDs work on the principle of heat exchange. During heat exchange the heat energy of the exhaust gases gets transferred to some other fluid medium. This exchange of heat reduces the temperature of the exhaust gases and simultaneously increases the temperature of the fluid medium. The heated fluid medium is either recycled back to the process or utilized in the production of some utilities such as steam or power etc. The benefits of WHRDs devices are multiple namely (i) economic, (ii) resource (fuel) saving, and (iii) environmental. The benefits of these devices include (i) saving of fuel, (ii) generation of electricity and mechanical work, (iii) reducing cooling needs, (iv) reducing capital investment costs in...

Air Pollution Control Devices...

Air Pollution Control Devices Air pollution control devices (APCD) are a series of devices which are used to prevent a variety of different pollutants, both gaseous and solid, from entering the atmosphere mainly out of the industrial stacks. These control devices can be separated into two broad categories namely (i) devices which control the amount of particulate matter escaping into the environment, and (ii) devices which controls the acidic gas emissions into the atmosphere. By and large the air pollutants are generated due to the combustion of fuels in the furnaces. The major combustion-generated pollutants are the oxides of nitrogen (NOx), sulphur dioxide (SO2), carbon monoxide (CO), unburned hydrocarbons, and particulate matter. The generated pollutants are carried by the exhaust gases produced during the combustion of the fuel. These exhaust gases are then normally passed through the APCDs before releasing them to the atmosphere.  The pollutants are removed, destroyed, or transformed in the control devices before the discharge of the exhaust gas into the atmospheric air. Common methods for removing the pollutants from the exhaust gases work on the following principles. Destroying pollutants by thermal or catalytic combustion, such as by use of a flare stack, a high temperature incinerator, or a catalytic combustion reactor. This technique is used when the pollutants are in the form of organic gases or vapours. During flame combustion or catalytic process, these organic pollutants are converted into water vapour and relatively less harmful products, such as carbon dioxide (CO2). Changing pollutants to less harmful forms through chemical reactions, such as converting nitrogen oxides (NOx) to nitrogen and water through the addition of ammonia to the exhaust gas in front of a selective catalytic reactor. In the technique known as ‘absorption’, the gaseous effluents are passed through scrubbers or absorbers. These contain a suitable liquid absorbent, which removes or modifies one or more...

Refractories for a Reheating Furnace...

Refractories for a Reheating Furnace Refractories are inorganic, nonmetallic, porous and heterogeneous materials composed of thermally stable mineral aggregates, a binder phase and additives. They are the materials which are resistant to heat and exposure to different degrees of mechanical stress and strain, thermal stress and strain, corrosion/erosion from solids, liquids and gases, gas diffusion, and mechanical abrasion at various temperatures. In simplified language, refractories are considered to be materials of construction which are able to withstand high temperatures. The general requirements from the refractories for are (i) ability to withstand high temperatures and trap heat within a limited area such as a reheating furnace, (ii) ability to withstand sudden changes of temperature, (iii) ability to withstand load at service conditions, (iv) ability to withstand chemical and abrasive action of the materials such as liquid metal, liquid slag, and hot gases etc. coming in contact with the refractories, (v) ability to resist contamination of the material such as scale etc. with which it comes into contact, (vi) ability to maintain sufficient dimensional stability at high temperatures and after/during repeated thermal cycling, (vii) ability to conserve heat, (viii) ability to withstand load and abrasive forces, and (ix) to have low coefficient of thermal expansion. Properties of the refractories can be classified to resist four types of service stresses namely (i) chemical, (ii) mechanical, (iii) thermal, and (iv) thermo-technical. A suitable selection of the refractories for the lining of the reheating furnace can only be made with an accurate knowledge of the refractory properties and the stresses on the refractories during service. The relationship between service stresses and important properties of the refractories are at Tab 1.  Tab 1 Relationship between type of stress and refractory property Sl.No. Type of stress Important refractory property 1 Chemical...

Mill Scale

Mill Scale Mill scale is the product of oxidation which takes place during hot rolling. The oxidation and scale formation of steel is an unavoidable phenomenon during the process of hot rolling which involve reheating of steel in a reheating furnace, multi-pass hot rolling and air-cooling in the inter-pass delay times and after rolling.  Mill scale is usually removed by process water used for descaling, roll and material cooling, and by other methods. It is subsequently separated by gravity separation techniques. The formation of oxide scale not only results in a significant loss of yield of steel, but also deteriorates the surface quality of the steel product caused by rolled-in scale defects or roughened surface. In addition, the presence of a hard scale layer on the steel can have an adverse effect on roll wear and working life. The amount of mill scale generated in a rolling mill depends on the type of the reheating furnace and on the practice of rolling adopted in the mill. It is generally in the range of 1 % to 3 % of the weight of the steel rolled. Mill scale mill scale is a layered and brittle material, composed of iron oxides with wustite as a predominant phase. It is normally considered as waste material. From the chemical and physical analysis performed on the mill scale, and with respect to the environmental concerns, mill scale is considered to be non-dangerous waste and normally considered as a green waste. Scale formed during the heating of steel to rolling temperatures in the reheating furnace is known as primary scale. This primary scale is removed generally by hydraulic descaling before hot rolling. The removal of the primary scale formed during the reheating operation before hot rolling is usually done for...

Bearings for Rolling mill Rolls...

Bearings for Rolling mill Rolls Rolling mills for rolling of steel differ in many aspects with each other. The rolling mills are of different sizes and capacities. The mills roll steel materials of different cross-sections, sizes and qualities and in material conditions which are either hot or cold. The mills have different configurations and speeds of rolling. The configurations of the mills can vary from cross country, reversing, semi continuous to continuous. The equipments of rolling mills can have manual operations, mechanical operations, electro-mechanical operations, pneumatic operations, hydraulic operations, or a combination of all of these. The controls provided in the mills can be manual controls, remote controls, instrumented controls, or fully automated controls. Further in many types of mills even heat treatment processes are integrated. In spite of the so many differences, all the rolling mills have in common some basic technologies and equipments. All the rolling mills have rolls for the rolling of materials which are fitted in roll stands. Rolls are either driven by electric power or friction driven and are to resist many forces for normal rolling. The roll stands can have two rolls, three rolls, four rolls, six rolls, or a set of multiple rolls mounted on them depending on the types of mills. During rolling, the load on the rolls gets transferred to the roll neck bearings and their assembly (chocks). Rolls for their smooth rotation as well as for resistance to different forces need ‘bearings’.  Roll bearings are to meet the basic need of the rolling mill which is the smooth rolling of the steel products. They are friction reducing devices which provide support to the rolls for effective rolling with minimum of energy loss. The bearings are designed to withstand high rolling loads, heavy shocks, varying...

Refractories and Classification of Refractories...

Refractories and Classification of Refractories Refractories are inorganic, nonmetallic, porous and heterogeneous materials composed of thermally stable mineral aggregates, a binder phase and additives. The principal raw materials used in the production of refractories are normally the oxides of silicon, aluminum, magnesium, calcium and zirconium. There are some non-oxide refractories like carbides, nitrides, borides, silicates and graphite. Refractories are chosen according to the conditions they face during their use. Some applications require special refractory materials. Zirconia is used when the material is required to withstand extremely high temperatures. Silicon carbide and carbon are two other refractory materials used in some very severe temperature conditions, but they cannot be used in contact with oxygen, since they oxidize and burn in atmospheres containing oxygen. Refractories are the materials which are resistant to heat and exposure to different degrees of mechanical stress and strain, thermal stress and strain, corrosion/erosion from solids, liquids and gases, gas diffusion, and mechanical abrasion at various temperatures. In simplified language, they are considered to be materials of construction which are able to withstand high temperatures. Refractories are usually inorganic non-metallic materials with refractoriness greater than 1500 deg C. They belong to coarse-grained ceramics having microstructure which is composed of large grains. The basis of body is coarse-grained grog joined by fine materials. Refractory products are a specific sort of ceramics that differs from any ‘normal’ ceramics mainly with their coarse-grained structure being formed by larger grog particles joined by finer intermediate materials (bonding). ASTM C71 defines refractories as ‘non-metallic materials having those chemical and physical properties that make them applicable for structures or as components of systems that are exposed to environments above 538 deg C’. Refractories are to be chemically and physically stable at high temperatures. Depending on the operating environment, they...