Natural gas and its Usage in Iron and Steel Industry...

Natural gas and its Usage in Iron and Steel Industry Natural gas (NG) is an environmentally friendly non-renewable gaseous fossil fuel which is extracted from deposits in the earth. It is a clean and green fuel with a high efficiency and plays a major role in helping many industries cut emissions and improve the overall air quality. It is normally supplied as (i) piped natural gas (PNG), (ii) compressed natural gas (CNG), and (iii) liquefied natural gas (LNG). Natural gas is a mixture of hydro-carbons consisting primarily of methane (CH4), generally in a percentage of over 85 % by volume. Other hydro-carbons in NG include varying amounts of various higher alkanes such as ethane, propane, and butane etc. It also contains water vapour (H2O) at varying degrees of saturation, or condensed water. It may also contain some small percentage of nitrogen (N2), carbon dioxide (CO2) and hydrogen sulphide (H2S) and helium (He) etc. NG burns with a clean blue luminous flame when mixed with the requisite amount of air and ignited. It is considered one of the cleanest burning fuels. On burning, it produces primarily heat, CO2, and water vapour. NG is a fuel found in deposits in its gas phase. It is colourless and odourless, non-toxic, and lighter than air. It does not contain olefins (hydrocarbons produced during the process of destructive distillation or reforming). It is a highly flammable and combustible gas. Its CAS number is 8006-14-2 and UN number is 1971. Quantities of natural gas are measured in normal cubic meters (corresponding to 0 deg C and 1 atmosphere pressure) or standard cubic feet (corresponding to 16 deg C and 14.73 pounds per square inch absolute pressure). The higher heat value of one cubic meter of natural gas varies from around 9500...

Thermal Coal

Thermal Coal Thermal coal is a type of bituminous coal which is used to provide heat energy in combustion in various types of furnaces via the pulverized fuel method because of its high calorific value (CV). It is also sometimes called as non-coking coal, steam coal, or boiler coal. It includes all those bituminous coals which are not included under coking coal category. It is characterized by higher volatile matter (VM) than anthracite (more than 10 %) and lower carbon (C) content (less than 90 % fixed C). Its gross CV is greater than 5700 kcal/kg on an ash?free but moist basis. The greatest use of thermal coal is for the generation of steam in the boilers for the purpose of generation of electricity. Thermal coal is also used in some of the processes for ironmaking especially in the production of direct reduced iron (DRI) and in the smelting reduction processes for the production of hot metal (HM). Thermal coal is a complex heterogeneous substance. Hence, it has no fixed chemical formula. Its characteristics and hence its CV vary widely. Thermal coals like other coals also contain carbon (C), oxygen (O2), and hydrogen (H2). The other constituents in thermal coals include sulphur (S), nitrogen (N2), ash, chlorine (Cl), and sodium (Na). The quality of thermal of coals is based on the amount of C, O2, and H2 present in coal. The metallic elements in the thermal coal contribute to the coal ash. The chemical structure of the organic molecules of the thermal coal is very complex and is dependent on the rank of the coal. It varies from one coal to another coal. Typical structure of thermal coal is given in Fig 1. Fig 1 Typical structure of thermal coal The performance of the...

Coal for Pulverized Coal Injection in Blast Furnace...

Coal for Pulverized Coal Injection in Blast Furnace Injection of pulverized coal in the blast furnace (BF) was initially driven by high oil prices but now the use of pulverized coal injection (PCI) has  become a standard practice in the operation of a BF since it satisfy the requirement of reducing raw material costs, pollution and also satisfy the need to extend the life of ageing coke ovens. The injection of the pulverized coal into the BF results into (i) increase in the productivity of the BF, i.e. the amount of hot metal (HM) produced per day by the BF, (ii) reduce the consumption of the more expensive coking coals by replacing coke with cheaper soft coking or thermal coals, (iii) assist in maintaining furnace stability, (iv) improve the consistency of the quality of the HM and reduce its silicon (Si) content, and (v) reduce greenhouse gas emissions. In addition to these advantages, use of the PCI in the BF has proved to be a powerful tool in the hands of the furnace operator to adjust the thermal condition of the furnace much faster than what is possible by adjusting the burden charge from the top. Schematic diagram of a BF tuyere showing a pulverized coal injection lance is at Fig 1. Fig 1 Schematic diagram of a BF tuyere showing a pulverized coal injection lance Several types of coals are being used for PCI in the BF. In principle, all types of coals can be used for injection in BF, but coking coals are not used for injection since they are costly, have lower availability and are needed for the production of coke. Also, if coking coals are used for injections in BF, They lead to tuyere coking. Hence, coals used for injection...

Metallurgical Coal

Metallurgical Coal Metallurgical coal is also called ‘met coal’ or ‘coking coal. It is a bituminous coal which allows the production of a coke suitable to support a blast furnace (BF) charge. It is distinguished by the strong low-density coke produced when the coal is heated in a low oxygen (O2) environment or in absence of air to reduce mineral impurities (e.g. less sulphur, phosphorus). On heating, the coal softens, and volatile components evaporate and escape through pores in the mass. On cooling, the resultant coke has swollen, becoming a larger volume. The strength and density of coke is particularly important when it is used in a BF, as the coke supports part of the ore and flux burden inside the BF. Metallurgical coal possesses the ability to soften and re-solidify into a coherent, porous mass, when heated from 300 deg C to 550 deg C in the absence of air in a confined space. The conversion from coal to coke occurs in chambers called coke ovens where the volatiles from the coal escape, leaving behind what is referred to as metallurgical coke, which reaches a temperature of around 1,000 deg C to 1200 deg C before being removed from the ovens. The coking cycle is normally dependent on several parameters. Coke is used primarily as a fuel and a reducing agent in a BF. The gross calorific value (CV) of the metallurgical coal is greater than 5700 kcal/kg on an ash?free but moist basis. It presents unique plastic properties during carbonization which in turn produces a porous solid, high in carbon (C) coke. Metallurgical coals, when heated at a moderate rate in the absence of air, undergo complex and continuous changes in chemical composition and physical character. During carbonization, most bituminous coals, except those bordering...

Bituminous coal

Bituminous coal Bituminous coal is an organic sedimentary rock formed by diagenetic and sub metamorphic compression of peat bog material. It is also called as black coal. It is often referred to as soft coal. However, this designation is a layman’s term and has little to do with the hardness of the rock. Bituminous coal is by far the largest group and is characterized as having lower fixed carbon (C) and higher volatile matter than anthracite coals. It is the type of coal which is most widely used in the world today. Bituminous coal is the second highest quality of coal (below anthracite) and the most abundant type. Usually, bituminous coal comes from fairly old coal deposits (around 300 million years old).The energy density of this coal is relatively high, therefore, releases a significant amount of energy when burned. Bituminous coal is defined as a medium?rank coal with either a gross calorific value (CV) on a moist, ash?free basis of not less than 24 mega joules per kilogram (MJ/kg) and with a Vitrinite mean Random Reflectance less than 2.0 %, or with a gross CV on a moist, ash?free basis of less than 24 MJ/kg provided that the Vitrinite mean random reflectance is equal to, or greater than 0.6 %. Bituminous coals are agglomerating and have a higher volatile matter (VM) and lower C content than anthracite coal. This coal is originated by coalification of plant matter deposited in sequences dominated by clastic sediments under diagenetic conditions (thermal and pressure mode) of a given coal basin. Coalification proceeded under geologic time scale. In various coal basins (coal seams) coal matter differs in regard of different primary composition of plant matter and sedimentary environment. Composition of coal (e.g. elemental composition, VM etc.) and mean reflectance of vitrinite reflect final stage of coal metamorphism of a given sedimentary basin. Bituminous...

Anthracite Coal

Anthracite Coal Anthracite coal derives its name from the Greek word ‘anthrakít?s’, literally meaning ‘coal-like’.  It is frequently being referred as hard coal and is one of the four types of coals. Other types of coals are lignite coal, sub- bituminous coal and bituminous coal. Since anthracite coal had been subjected to the intense pressure and heat, it is the most compressed and hardest coal available. Being a hard coal, it contains greater potential to produce heat energy than softer, geologically ‘newer’ coal. As per ISO 11760:2005, anthracite coal is defined as the coal, synonymous with high-rank coal, having a mean random vitrinite reflectance, equal to or greater than 2.0 % but less than 6.0 %, or, preferably, a mean maximum reflectance, , less than 8.0 % for geologically unaltered coal. Geology and mining of anthracite coal Anthracite coal was formed from bituminous coal when great pressures had developed in the folded rock. Transformation of the bituminous coal into anthracite is called ‘Anthracitization’. It was formed during the Carboniferous Age, when the dense green vegetation that thrived during the tropical climate of the time fossilized. It is the oldest and cleanest type of coal. It is the rarest and most mature coal. It is a hard, compact variety of coal. It has the highest ranking amongst all the four types of coals. It has undergone the most metamorphosis. It has the highest fixed carbon content and the least impurities. It has the highest energy density amongst all types of coal. The formation of anthracite coal is shown in Fig 1. Fig 1 Formation of anthracite coal Anthracite coal normally occurs in old geological formations which have spent the longest time underground. It is the rarest and most mature coal which accounts for only around 1 % of the world’s total coal reserves. The major reserves of the anthracite coal are...