Safety in Rolling Mills...

Safety in Rolling Mills Worldwide, as the rolling speeds are increasing, greater emphasis is being placed on the aspects of safety while designing the mill equipment as well as during the finalization of the mill layouts. Providing high importance to safety is in the best interest of the designers, manufacturers and the users of the rolling mills. Safeguarding of the mill equipment is necessary for ensuring the safe working of the rolling mill after its commissioning. Manufacturers of the rolling mills have the objective to produce a competitive mill, while users desire to have a highly productive mill. However, before any of these objectives can be met, both the manufacturer and the user are to first determine how to engineer the mill using safe design principles to minimize operator’s risks. Investing in a safer workplace also reduces the expenses of treating injured workers, helps preventing workplace accidents besides boosting employees’ morale by conveying the message that the organization cares about its employees and wants to protect their health and safety. A brief overview of safety requirements for the equipment of rolling mill is given below. Common safety related definitions Safety is the ability of the equipment to perform its function while being transported, installed, adjusted, operated, maintained, dismantled, and disposed of under conditions of intended use specified in the instruction manual without causing injury or damage to health of the people carrying out these functions. Risk is a comprehensive estimate of the probability and the degree of the possible injury or damage to the health in a hazardous situation in order to select appropriate safety measures. Hazard is a condition or set of circumstances which can cause physical harm to the exposed personnel. Danger zone is any zone within or around the equipment in...

Role of Lubrication during the Process of Metal Working Feb15

Role of Lubrication during the Process of Metal Working...

Role of Lubrication during the Process of Metal Working For understanding the role of lubrication during the processes of metal working, it is important to know the tribology of the lubrication. Tribology consists of boundary friction, which is associated with almost all operations of the metal working. It is caused by the relative movement of two adjacent surfaces under pressure. During the metal working processes, the relative movement between rolls and work piece is improved by the surface speed differential of the rolls Friction Friction plays an important role during metal working process. It is defined as the resistance to relative motion between two bodies in contact. It is an energy dissipating process, causing the temperature at the interface to rise and, if excessive, can result in surface damage. It also influences the deformation taking place in the metal working process. As per the earliest theories, friction is the result of interlocking two rough surfaces sliding along each other. Friction is actually brought on by a large number of variables, such as load, speed, temperature, the materials involved in the sliding pair, and the various effects of fluids and gases at the interface. Most commonly accepted theory of friction is based on the resulting adhesion between the severities of the contacting bodies. It has been seen that regardless of how smooth the surfaces are, they contact each other at only a fraction of their apparent area of contact. Thus, the load during the process of metalworking is supported with few severities in contact. Hence, the normal stress at the severity junctions is high. Under light loads, the contact stresses can only be elastic. However, as the load increases to some of the levels involved in the metal working process, elastic deformation of the severities...

Preference of Steel as a Material of Construction...

Preference of Steel as a Material of Construction Steel is one of the most widely used materials, particularly in construction, engineering, white goods, and automobile industries. Steel is also used widely in the manufacture of electrical motors, power generation (nuclear, conventional fuels and wind), power transmission, and railway network. It is also used for gears and engines where it has to be very tough and withstand high temperatures. There is a group of steels known as ‘Advanced High Strength Steels’ (AHSS), which are specially treated steels that can be rolled very thin without losing the element of strength needed for the specific purpose.  These steels are particularly useful for the manufacture of automobiles, helping to reduce the overall mass and thus decrease the consumption of the fuel. Steels with a thin coating of tin are used to make cans for beverages and food. Steels coated in various ways with zinc are used in roofing, for example, and in automobiles as the zinc gives protection to steel against corrosion. It is estimated that there are more than 20,000 million tons of steel in use, which means that there is more than 2 tons of steel is in use for every person living on the Earth. The construction industry is the main user of steel. It uses steel from small buildings to huge bridges and uses it in multiple ways even within a single construction.  A bridge, as an example, may use steel in the huge suspension ropes, the steel plate flooring for the road, the beams for the columns, and for the safety barriers and lighting columns. A large amount of steel is also used in the reinforce concrete. In fact, steel is either used or used to produce all the items needed in our daily life....

Employee education and training...

Employee education and training Technologies are changing very fast in today’s world. Latest technologies of yesterday have become outdated today and what is latest today will change tomorrow and newer method of production will replace the traditional methods of production of today. As new technologies have advanced, new procedures and new skills are required and there is an increasing need for skilled and highly trained employees who are able to meet these changing situations in the workplace. These changes require new job requirements and new methods of working which in turn require different combination of expertise, knowledge, and skills. In this environment of growing uncertainty, organizations are to be aware of the need for their businesses to search for new answers to the problems of productivity and quality. As the technology advances, necessity arises for a higher level of skills from the employees of the organization. Studies have shown that there is a long term shift away from unskilled to highly skilled jobs with the advancement of the technology. However, despite this increasing requirement for highly skilled employees, there is evidence that the skills gap in some of the organizations is widening with a growing deficit in key or core skills, which does not augur well for the future for these organizations. Education and training are essential for the development of employees’ capabilities. Both these activities are tied closely together and mutually reinforce each other in the promotion of employees’ development. These activities develop creativity, positive attitude, and a sense of responsibility and also help the employees to attain high degree of motivation. Through these activities, employees can improve their respective skills and develop a sense of fulfillment. Good-quality education, complemented by relevant training and skills development opportunities, prepare the employees for their productive...

PERED Technology for Direct Reduced Iron Production Jan18

PERED Technology for Direct Reduced Iron Production...

PERED Technology for Direct Reduced Iron Production PERED technology is also known as ‘Persian Reduction’ technology. It is the direct reduction technology invented and patented by ‘Mines and Metals Engineering GmbH’ in 2007. The PERED direct reduction process converts iron oxides, in the form of pellets or lump ore, to highly reduced product suitable for steel making. The reduction of iron oxide takes place without its melting with the help of reducing gases in solid state in a vertical shaft furnace. This technology improves the process of direct reduction for the production of direct reduced iron (DRI). The process is a gas based direct reduction process which has been developed by a team of specialists having experience in different areas of the direct reduction process to ensure that all the flows of different processes are taken care in the main process to obtain optimum and efficient results. The most popular gas used for reduction is reformed natural gas though other gases such as Corex gas and coke oven gas etc. can also be used. PERED technology lowers capital cost, water consumption, maintenance cost, and energy consumption. In PERED, the reduction process takes place at a lesser temperature due to the improved cooling methods and reduced pollutant gas emissions. With less heat, more homogeneous reducing gas, more controllable pellet feed and use of centrifugal compressors, PERED requires less water, electricity and gas to operate, alongside less operational and maintenance expenditure. Output from the PERED direct reduction plants can be in the form of (i) cold direct reduced iron (CDRI), hot briquetted iron (HBI), combination of CDRI/HBI, HBI/hot direct reduced iron (HDRI), and CDRI/HDRI. PERED technology is an improved energy efficient technology and hence economizes energy and resources. It makes optimum use of energy and raw materials...