Iron Carbide

Iron Carbide Iron carbide is a high melting point, non-pyrophoric, strongly magnetic synthetic compound obtained in granular or powder form. It is composed of three atoms of Fe and one atom C and its chemical formula is Fe3C. The commercial iron carbide consists of around 90 % total iron and around 6 % to 6.5 % of total carbon. The primary use of the product is as a metallic charge during steelmaking for substitution of hot metal, direct reduced iron, or steel scrap. Iron carbide is an intermetallic compound of iron and carbon. It is, more precisely, intermediate transition metal carbide. Its stoichiometric composition consists of 6.67 % carbon and 93.3 % iron (Fe) by weight. It has an orthorhombic crystal structure (Fig 1). It is a hard, brittle material and normally classified as a ceramic in its pure form. It is a frequently found and important constituent in ferrous metallurgy. While iron carbide is present in most steels and cast irons, it is produced as a raw material by the iron carbide process, which belongs to the family of alternative ironmaking technologies. Fig 1 Crystal of iron carbide Iron carbide is a premium quality feed for steelmaking in electric arc furnaces and basic oxygen furnaces. It is available as dark gray granules or powder. It offers matchless metallurgical advantages and outstanding cost savings. It has a density of 7.64 kg/cu m and is thus slightly denser than the liquid iron, which has a density of 6.98 kg/cu m. The iron carbide is composed of three atoms of Fe and one atom C and is also known as cementite. Cementite is an intermetallic compound which is hard, brittle, and metastable because it tends to decompose in ferrite (or austenite) and graphite according to the reaction Fe3C = 3 Fe + C. In fact, this transformation is not...

Competencies and development of competency framework for organization...

Competencies and development of competency framework for organization The greatest strength of an organization, and the key to its success, is the quality of its employees and their ability to thrive and fulfill their potential while delivering the output expected from them. The competency framework enables the organization to clarify expectations and to set standards for performance throughout the organization. It is a guide to help management and the employees to understand the behaviours and skills expected of them and what they are to strive for achieving them. The concept of competencies emerged during the early 1980s as a response to the organizational changes. This concept drives the organization towards higher performance levels. During the subsequent decades, competency frameworks have become an increasingly accepted part of modern HR (human resource) practice in the organizations. Competencies A competency is considered to be a cluster of related knowledge, skills, abilities, and characteristics which are related to the performance of a significant aspect of the practice of a profession. The term ‘competency’ is usually defined as a combination of skills, attributes and behaviours which are directly related to the performance on the job. They are important for all the employees regardless of occupation, function, or level. Competencies normally focus on the personal attributes or inputs of employees in the organization. They are the behaviours (and technical attributes where appropriate) which employees are to have, or are to acquire, for their effective performance at work. Competencies are broader concepts which encompass demonstrable performance outputs as well as behaviour inputs, and relate to a system or set of minimum standards required for the performance at the work. Competencies are means to provide organizational focus, as building blocks for human resource systems, and as methods for certifying attainment of various...

Process for Manufacturing of Iron Carbide Mar11

Process for Manufacturing of Iron Carbide...

Process for Manufacturing of Iron Carbide Iron carbide (Fe3C) is a high melting point, non-pyrophoric, strongly magnetic synthetic compound obtained in granular form. It consists of around 90 % total iron (Fe) and around 7 % total carbon (C). The primary use of the product is as a metallic charge during steelmaking for substitution of hot metal (HM), direct reduced iron (DRI), or steel scrap. The iron carbide process involves conversion of preheated fine iron ore particles to iron carbide. It reduces iron ore to iron carbide in a fluidized bed reactor, by contacting the iron ore with process gas consisting primarily of methane (CH4) and hydrogen (H2). The process for the manufacturing iron carbide was originally designed and developed at Hazen Research Inc. in Golden, Colorado, USA by the technical vice president Dr. Frank M. Stephens. The process involves reduction of preheated fine iron ore particles (0.1 mm to 1.0 mm) in a closed circuit fluidized bed reactor by preheated process gas containing CH4, H2, CO (carbon mono oxide), CO2 (carbon di oxide) and water vapour(H2O) at 600 deg C. A 50 mm diameter batch reactor was used for the laboratory tests. This was followed by continuous tests on a 600 mm diameter reactor. Iron ore samples from several countries were tested at Hazen. The product was successfully converted to steel by MEFOS in Sweden in a basic oxygen furnace (BOF) in 1979. After the initial laboratory tests at Hazen Research, Inc., Dr. Stephens applied for a patent and was issued on October 11, 1977 ‘US Patent No. 4,053.301’ by the Patent office of the United States. In 1985 Dr. Stephens retired and acquired the rights to the patent on the iron carbide. He formed a company by name ‘Iron Carbide Development Corporation’...