Romelt Process for Ironmaking Mar20

Romelt Process for Ironmaking...

Romelt Process for Ironmaking Romelt process for ironmaking is a smelting reduction process for the production of hot metal (liquid iron). The process has been developed by The National University of Science & Technology ‘MISiS’, Russia (formerly known as Moscow Institute of Steel and Alloys). The development work of the process started in 1978 when a group of ‘MISiS’ scientists led by Vladimir Roments began working on designing of this process. The first patent in Russia was obtained in 1979. A pilot production plant having a hearth area of 20 sq m and with a capacity 40,000 tons of hot metal per year was commissioned in 1985 at the Novolipetsk Iron and Steel Works (NLMK). The pilot plant was designed by Moscow Gipromez. The design of the reliable Vanyukov’s furnace was taken as the prototype for this new method of manufacturing hot metal. The process was tested and mastered at this pilot plant between 1985 and 1998. During this period forty-one campaigns were carried out, each of which included startup and slowdown, with full tapping of hot metal and slag from the furnace. More than 40,000 tons of hot metal was produced in the pilot plant during this period and used further in basic oxygen furnace (BOF) for steelmaking. The first industrial plant for hot metal production based on Romelt technology is being built at Myanmar. The plant has been designed by Leningrad Gipromez and being supplied by Tyazpromexport, a subsidiary of Rostec. This plant has a capacity of 200,000 tons per year and is based on the processing of iron ore without its beneficiation from Pang Pet ore deposit. Pang Pet ore deposits have Fe content of up to 29 %. The plant will use non-coking coal from Kye Thee coal fields. The...

Technical Drawings and their Types...

Technical Drawings and their Types Technical drawings are also known as ‘engineering drawings’. They are means of communications and convey technical information of plant and equipment. They describe three-dimensional objects through the medium of two-dimensional paper. The process of producing technical drawings, and the skill of producing those, is often referred to as ‘drafting’. Technical drawing is normally accepted as legal document and is frequently being used for regulatory approvals. Technical drawings are most frequently used to establish engineering requirements. They describe typical applications and minimum content requirements. They are standardized tools of graphical language which avoid verbal exchanges. They are used and understood by the technical personnel speaking different languages and belonging to different countries and cultures. Technical drawings are prepared in such a way that they convey complete information of the plant and equipment clearly and concisely. They often contain more than just a graphic representation of the subject. They also contain dimensions, notes and specifications. Clarity is the essential aspect of the technical drawings. They normally represent two dimension view of the object though some drawings also provide three dimensional views. They are prepared either manually or with the aid of computer. They are generally prepared or printed in standard size of paper. Except a few category of drawings (e.g. process flow diagrams, control diagrams, piping and instruments diagrams, and single line diagrams etc.), all the drawings are normally prepared in plan and different section views usually to the scale in order to provide complete information of the drawing object. Often help of standardized symbols are taken in the drawing for depicting certain equipments or instruments. Those informations which cannot be given in the plan and sections view such as material specification, tolerances, and bill of materials etc. are normally given in a...

Cost Benefit Analysis...

Cost Benefit Analysis Cost benefit analysis (CBA) is a tool which is used for the determination of the worth of a project, programme or policy. Its principles and practice are well established and widely used. Organizational management normally uses this tool to appraise a project before taking an investment decision. The decision to conduct a CBA for the project alternatives and the manner in which it is to be conducted is usually taken since it helps the management in making judgments and appraising available options. CBA is a systematic approach for the estimation of the strengths and weaknesses of alternatives and is used to determine options which provide the best approach to achieve benefits from the project. It is the comparison of costs and benefits of the project to decide whether it can be undertaken. In CBA both the tangible and intangible costs as well as tangible and intangible benefits are considered. CBA is a term that refers both to (i) a formal discipline used to help appraise, or assess, the case for a project, which itself is a process known as project appraisal, and (ii) an informal approach to making decisions. Under both definitions the process involves, whether explicitly or implicitly, weighing the total expected costs against the total expected benefits of the project or its alternatives in order to choose the best option. The idea of this economic accounting originated with Jules Dupuit, a French engineer whose 1848 article is still worth reading. The British economist, Alfred Marshall, formulated some of the formal concepts which are at the foundation of CBA. But the practical development of CBA came in 1936 when the regulatory act required US Corps of Engineers to take up only those projects for the improvement of the waterway system...

Development of Smelting Reduction Processes for Ironmaking Mar08

Development of Smelting Reduction Processes for Ironmaking...

Development of Smelting Reduction Processes for Ironmaking Smelting reduction (SR) processes are the most recent development in the production technology of hot metal (liquid iron). These processes combine the gasification of non-coking coal with the melt reduction of iron ore. Energy intensity of SR processes is lower than that of blast furnace (BF), since the production of coke is not needed and the need for preparation of iron ore is also reduced. SR ironmaking process was conceived in the late 1930s. The history of the development of SR processes goes back to the 1950s. The laboratory scale fundamental studies on the SR of iron ore were started first by Dancy in 1951. However, serious efforts started from 1980 onwards. There have been two separate lines of development of primary ironmaking technology during the second half of twentieth century. The first line of development was centred on the BF which remained the principal process unit for the hot metal production. In general, this line of the development did not encompass any radical process changes in the furnace itself. It proceeded through a gradual evolution which involved (i) increase in the furnace size, (ii) improvement in the burden preparation, (iii) increase in the top pressure, (iv) increase of hot blast temperature, (v) bell-less charging and improvements in burden distribution, (vi) improvements in refractories and cooling systems, (vii) injection of auxiliary fuels (fuel gas, liquid fuel, or pulverized coal) and enrichment of hot air blast with oxygen (O2), and (viii) application of automation as well as improvements in instrumentation and control technology. The continued success of the ironmaking in BF reflects the very high levels of thermal and chemical efficiencies which can be achieved during the production of hot metal and the consequent cost advantages. In fact,...